Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2017, Recent Patents on Nanotechnology
…
13 pages
1 file
Over the past decade, significant progress has been made in the identification of novel material binding peptides having affinity to a wide range of target materials and their use in nanobiotechnological innovations. These material binding peptides (MBPs), also known as solid/ substance binding peptides (SBPs) can be isolated using combinatorial display technologies such as phage display (PD), surface display (cell, bacterial, yeast, mRNA) exhibit material specific selectivity and affinity towards a range of inorganic and organic nanomaterial surfaces including metals, metal oxides, minerals, semiconductors and biomolecules. MBPs serve as mediators in bringing nanotechnology and biotechnology under one umbrella by linking solid nanoparticles with biomolecules including proteins, bioactive peptide motifs, bifunctional binding peptides, enzymes, antigens and antibody fragments. As the utilization and application of these inorganic binding peptides as molecular connectors, molecular assemblers and material specific synthesizers in nanotechnology has been expanding rapidly, so too has growing commercial interest in patenting such innovations. In this review, we present the past, current and future developments and applications of inorganic MBPs specific to nanomaterials and their applications.
2000
Proteins, one of the building blocks in organisms, not only control the assembly in biological systems but also provide most of their complex functions. It may be possible to assemble materials for practical technological applications utilizing the unique advantages provided by proteins. Here we discuss molecular biomimetic pathways in the quest for imitating biology at the molecular scale via protein
Biomacromolecules, 2009
Binding kinetics of platinum-, silica-, and gold-binding peptides were investigated using a modified surface plasmon resonance spectroscopy (SPR). Platinum binding septa-peptides, quartz-binding dodecapeptides, and gold-binding 14-aa peptides were originally selected using phage or cell surface display libraries using the mineral or pure forms of these materials. All of the peptides were synthesized singly to investigate their binding kinetics and to assess quantitatively the specific affinity of each to its material of selection. The peptides were also postselection engineered to contain multiple copies of the same original sequences to quantify the effects of repeating units. SPR spectroscopy, normally using gold surfaces, was modified to contain a thin film (a few nm thick) of the material of interest (silica or platinum) on gold to allow the quantitative study of the adsorption kinetics of specific solid-binding peptides. The SPR experiments, carried out at different concentrations, on all three materials substrates, resulted in Langmuir behavior that allowed the determination of the kinetic parameters, including adsorption, desorption, and equilibrium binding constants for each of the solids as well as free energy of adsorption. Furthermore, we also tested multiple repeats of the peptide sequences, specifically three repeats, to see if there is a general trend of increased binding with increased number of binding domains. There was no general trend in the binding strength of the peptides with the increase of the repeat units from one to three, possibly because of the conformational changes between the single and multiple repeat polypeptides. In all cases, however, the binding was strong enough to suggest that these inorganic binding peptides could potentially be used as specific molecular linkers to bind molecular entities to specific solid substrates due to their surface recognition characteristics.
MRS Bulletin, 2008
In nature, the molecular-recognition ability of peptides and, consequently, their functions are evolved through successive cycles of mutation and selection. Using biology as a guide, it is now possible to select, tailor, and control peptide–solid interactions and exploit them in novel ways. Combinatorial mutagenesis provides a protocol to genetically select short peptides with specific affinity to the surfaces of a variety of materials including metals, ceramics, and semiconductors. In the articles of this issue, we describe molecular characterization of inorganic-binding peptides; explain their further tailoring using post-selection genetic engineering and bioinformatics; and finally demonstrate their utility as molecular synthesizers, erectors, and assemblers. The peptides become fundamental building blocks of functional materials, each uniquely designed for an application in areas ranging from practical engineering to medicine.
Small, 2006
Adsorption studies of a genetically engineered gold-binding peptide, GBP1, were carried out using a quartz-crystal microbalance (QCM) to quantify its molecular affinity to noble metals. The peptide showed higher adsorption onto and lower desorption from a gold surface compared to a platinum substrate. The material specificity, that is, the preferential adsorption, of GBP1 was also demonstrated using gold and platinum micropatterned on a silicon wafer containing native oxide. The biotinylated three-repeat units of GBP1 were preferentially adsorbed onto gold regions delineated using streptavidin-conjugated quantum dots (SAQDs). These experiments not only demonstrate that an inorganic-binding peptide could preferentially adsorb onto a metal (Au) rather than an oxide (SiO 2 ) but also onto one noble metal (Au) over another (Pt). This result shows the utility of an engineered peptide as a molecular erector in the directed immobilization of a nanoscale hybrid entity (SAQDs) over selected regions (Au) on a fairly complex substrate (Au and Pt micropatterned regions on silica). The selective and controlled adsorption of inorganic-binding peptides may have significant implications in nanoand nanobiotechnology, where they could be genetically tailored for specific use in the development of self-assembled molecular systems.
Phage display is a commonly utilized in vivo approach in selecting peptides specific to solid inorganic materials. In this process, traditionally, high affinity peptides are recovered by a chemical elution method, which involves contacting the phage library with the desired inorganic, washing the weak binders, and eluting the tight binders under harsh buffer conditions. This process may result in incomplete removal of all strong binders, separation of the phage from the display protein, or may modify the material surface. To overcome these potential limitations, we developed a physical elution technique based on ultrasonication. Here, we report two optimized ultrasonication protocols by which we selected peptides specific to natural mineral mica. We first performed a 30-s physical elution after the chemical elution step and increased the efficiency of screening strong binders by about 100%. Encouraged by the results, we applied physical elutiononly protocol where we obtained 45% of the selected sequences as strong binders. The approach has a far shorter total elution time, i.e., seconds compared to hours in traditional chemical elution. The novel physical elution approach using ultrasonication reported herein can be a highly efficient alternate step in the screening of solid material specific peptides.
MEDICAL DEVICES & SENSORS, 2020
Joining biology with materials science requires the ability to design, engineer and control biology/solid‐state materials interfaces at the molecular level. The specific molecular interactions that take place among biomolecules, known as molecular recognition, enable all aspects of molecular processes in living systems prerequisite to the biological functions. Having the ability to establish specific biological interactions between the solid materials and biological constituents is essential for precise design of biologically viable soft interfaces that are molecularly tailored at solid surfaces. Solid‐binding peptides offer excellent opportunities in surface biofunctionalization over the traditionally utilized chemical approaches which generally make use of covalent bonds for surface molecular attachments with limited flexibility. Solid‐binding peptides are selected using directed evolution techniques using genotype to phenotype relationships and therefore referred also as genetica...
Nature, 2000
Journal of Biological Chemistry, 2010
Recent advances in molecular evolution technology enabled us to identify peptides and antibodies with affinity for inorganic materials. In the field of nanotechnology, the use of the functional peptides and antibodies should aid the construction of interface molecules designed to spontaneously link different nanomaterials; however, few material-binding antibodies, which have much higher affinity than short peptides, have been identified. Here, we generated high affinity antibodies from material-binding peptides by integrating peptide-grafting and phage-display techniques. A material-binding peptide sequence was first grafted into an appropriate loop of the complementarity determining region (CDR) of a camel-type single variable antibody fragment to create a low affinity material-binding antibody. Application of a combinatorial library approach to another CDR loop in the low affinity antibody then clearly and steadily promoted affinity for a specific material surface. Thermodynamic analysis demonstrated that the enthalpy synergistic effect from grafted and selected CDR loops drastically increased the affinity for material surface, indicating the potential of antibody scaffold for creating high affinity small interface units. We show the availability of the construction of antibodies by integrating graft and evolution technology for various inorganic materials and the potential of high affinity material-binding antibodies in biointerface applications.
2008
In nature, the molecular-recognition ability of peptides and, consequently, their functions are evolved through successive cycles of mutation and selection. Using biology as a guide, it is now possible to select, tailor, and control peptide-solid interactions and exploit them in novel ways. Combinatorial mutagenesis provides a protocol to genetically select short peptides with specific affinity to the surfaces of a variety of materials including metals, ceramics, and semiconductors. In the articles of this issue, we describe molecular characterization of inorganic-binding peptides; explain their further tailoring using post-selection genetic engineering and bioinformatics; and finally demonstrate their utility as molecular synthesizers, erectors, and assemblers. The peptides become fundamental building blocks of functional materials, each uniquely designed for an application in areas ranging from practical engineering to medicine.
Journal of the American Chemical Society, 2011
The ability to control the size, shape, composition, and activity of nanomaterials presents a formidable challenge. Peptide approaches represent new avenues to achieve such control at the synthetic level; however, the critical interactions at the bio/nano interface that direct such precision remain poorly understood. Here we present evidence to suggest that materials-directing peptides bind at specific time points during Pd nanoparticle (NP) growth, dictated by material crystallinity. As such surfaces are presented, rapid peptide binding occurs, resulting in the stabilization and size control of single-crystal NPs. Such specificity suggests that peptides could be engineered to direct the structure of nanomaterials at the atomic level, thus enhancing their activity.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
Bioinspired, Biomimetic and Nanobiomaterials, 2012
BMC Biotechnology, 2014
Journal of the American Chemical Society, 2014
Philosophical Transactions of The Royal Society A: Mathematical, Physical and Engineering Sciences, 2009
Progress in Organic Coatings, 2003
Materials Science and Engineering: C, 2007
Materials Science and Engineering: C, 2009
Separations, 2022
Advanced Materials, 2005
Chemical Society Reviews, 2010