Academia.eduAcademia.edu

AI-based defect detection and self-healing in metal additive manufacturing

2025, Virtual and Physical Prototyping

https://doi.org/10.1080/17452759.2025.2500671

Abstract

This pilot study develops a process to evaluate in-situ defect detection and self-healing in Ti-6Al-4V fabricated using laser-based powder bed fusion. A tailor-made test specimen was designed and manufactured for the nanofocus tube X-ray computed tomography (XCT) system. In situ optical tomography was used to capture infrared images containing heat signatures of the hot laser interaction zone. Depicting natural process variation, defective regions were seeded using process manipulation (up to ±30%) in proximity of the experimental standard volumetric energy density (VED). The concomitant defects and heat signatures were both spatially and temporally captured. The results indicate that porosity significantly grows from an average value of 27 parts per million (PPM) to a value of 337 PPM comprising defect sizes of <112 µm when the VED increases by 30%. The outcome confirmed that Ti-6Al-4V can self-heal these defective regions by up to 7 ± 1 layers using the standard VED. A convolutional neural network was trained (n = 211) and was verified with XCT. The model demonstrated prediction accuracy of 94% for the six classes of unfamiliar defective regions. This work enables in-situ detection and healing of defective regions caused by process uncertainty that can shift the quality frontier of novel product design and development.

References (42)

  1. Akmal JS, Salmi M, Björkstrand R, et al. Switchover to industrial additive manufacturing: dynamic decision- making for problematic spare parts. Int J Operat Prod Management. 2022;42(13):358-384. doi:10.1108/IJOPM- 01-2022-0054
  2. Akmal J, Salmi M. Additive manufacturing of self-sensing parts through material extrusion. Virtual Phys Prototyp. 2024;19(1):e2321200. doi:10.1080/17452759.2024.2321200
  3. Akmal JS. Why switch operations to digital manufactur- ing? Stoori. 2024;1:38-44.
  4. Kukko K, Akmal JS, Kangas A, et al. Additively manufac- tured parametric universal clip-system: An open source approach for aiding personal exposure measurement in the breathing zone. Appl Sci (Switzerland). 2020;10(19): 6671. doi:10.3390/APP10196671
  5. ISO/ASTM 52900. ISO/ASTM 52900:2021(en) Additive manufacturing -general principles -terminology (2nd ed.). ISO/ASTM International 2015; 2021.
  6. Ullah R, Lian J, Akmal J, et al. Prediction and validation of melt pool dimensions and geometric distortions of additively manufactured AlSi10Mg. Int J Adv Manuf Technol. 2023;126(7-8):3593-3613. doi:10.1007/s00170- 023-11264-w
  7. Wang P, Yang Y, Moghaddam NS. Process modeling in laser powder bed fusion towards defect detection and quality control via machine learning: The state-of-the- art and research challenges. J Manuf Process. 2022;73:961-984. doi:10.1016/j.jmapro.2021.11.037
  8. Yang J, Han J, Yu H, et al. Role of molten pool mode on formability, microstructure and mechanical properties of selective laser melted Ti-6Al-4 V alloy. Mater Des. 2016;110:558-570. doi:10.1016/j.matdes.2016.08.036
  9. König HH, Pettersson NH, Durga A, et al. Solidification modes during additive manufacturing of steel revealed by high-speed X-ray diffraction. Acta Mater. 2023;246: 118713. doi:10.1016/j.actamat.2023.118713
  10. Ladewig A, Schlick G, Fisser M, et al. Influence of the shielding gas flow on the removal of process by-products in the selective laser melting process. Addit Manuf. 2016;10:1-9. doi:10.1016/j.addma.2016.01.004
  11. Soundararajan B, Sofia D, Barletta D, et al. Review on mod- eling techniques for powder bed fusion processes based on physical principles. Addit Manuf. 2021;47:102336. doi:10.1016/j.addma.2021.102336
  12. Björkstrand R, Akmal J, Salmi M. Metal laser-based powder bed fusion process development using optical tomogra- phy. Materials. 2024;17(7):1461. doi:10.3390/ma17071461
  13. du Plessis A, Yadroitsava I, Yadroitsev I. Effects of defects on mechanical properties in metal additive manufactur- ing: A review focusing on X-ray tomography insights. Mater Des. 2020;187:108385. doi:10.1016/j.matdes.2019. 108385
  14. Gong H, Rafi K, Gu H, et al. Analysis of defect generation in Ti-6Al-4 V parts made using powder bed fusion additive manufacturing processes. Addit Manuf. 2014;1:87-98. doi:10.1016/j.addma.2014.08.002
  15. Luo Q, Yin L, Simpson TW, et al. Effect of processing par- ameters on pore structures, grain features, and mechan- ical properties in Ti-6Al-4 V by laser powder bed fusion. Addit Manuf. 2022;56:102915. doi:10.1016/j.addma.2022. 102915
  16. Bauereiß A, Scharowsky T, Körner C. Defect generation and propagation mechanism during additive manufac- turing by selective beam melting. J Mater Process Technol. 2014;214(11):2522-2528. doi:10.1016/j.jmatprotec. 2014.05.002
  17. Colosimo BM, Huang Q, Dasgupta T, et al. Opportunities and challenges of quality engineering for additive manu- facturing. J Qual Technol. 2018;50(3):233-252. doi:10. 1080/00224065.2018.1487726
  18. Grasso M, Colosimo BM. Process defects and in situ moni- toring methods in metal powder bed fusion: A review. Meas Sci Technol. 2017;28(4):044005. doi:10.1088/1361- 6501/aa5c4f
  19. Kunkel MH, Gebhardt A, Mpofu K, et al. Quality assurance in metal powder bed fusion via deep-learning-based image classification. Rapid Prototyp J. 2020;26(2):259- 266. doi:10.1108/RPJ-03-2019-0066
  20. Yadav P, Rigo O, Arvieu C, et al. In situ monitoring systems of the SLM process: on the need to develop machine learning models for data processing. Crystals. 2020;10(6):1-26. doi:10.3390/cryst10060524
  21. Spears TG, Gold SA. In-process sensing in selective laser melting (SLM) additive manufacturing. Integr Mater Manuf Innov. 2016;5(1):16-40. doi:10.1186/s40192-016-0045-4
  22. Ren Z, Gao L, Clark SJ, et al. Machine learning-aided real- time detection of keyhole pore generation in laser powder bed fusion. Science (New York, NY). 2023;379(6627):89-94. doi:10.1126/science.add4667
  23. Schwerz C, Nyborg L. A neural network for identification and classification of systematic internal flaws in laser powder bed fusion. CIRP J Manuf Sci Technol. 2022;37:312-318. doi:10.1016/j.cirpj.2022.02.010
  24. Wang C, Tan XP, Tor SB, et al. Machine learning in addi- tive manufacturing: state-of-the-art and perspectives. Addit Manuf. 2020a;36:101538. doi:10.1016/j.addma. 2020.101538
  25. Akmal J, Macarie M, Björkstrand R, et al. Defect detection in laser-based powder bed fusion process using machine learning classification methods. IOP Conf Ser: Mater Sci Eng. 2023;1296(1):012013. doi:10.1088/1757-899x/1296/ 1/012013
  26. Dallaev R. Advances in materials with self-healing proper- ties: a brief review. Materials. 2024;17(10):2464. doi:10. 3390/ma17102464
  27. Kim SA, Lee Y, Park K, et al. 3D printing of mechani- cally tough and self-healing hydrogels with carbon nanotube fillers. Int J Bioprint. 2023;9(5):765. doi:10. 18063/ijb.765
  28. Hager MD, Greil P, Leyens C, et al. Self-healing materials. Adv Mater. 2010;22(47):5424-5430. doi:10.1002/adma. 201003036
  29. Abadi M, Agarwal A, Barham P, et al. TensorFlow: large- scale machine learning on heterogeneous distributed systems; 2016. doi:10.48550/arxiv.1603.04467
  30. Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: machine learning in Python. Journal of Machine Learning Res. 2011;12:2825-2830. http://scikit-learn.sourceforge.net.
  31. Li L, Jamieson K, Rostamizadeh A, et al. Hyperband: a novel bandit-based approach to hyperparameter optim- ization. J Mach Learn Res. 2018;18:1-52. http://jmlr.org/ papers/v18/16-558.html.
  32. Liu W, Chen C, Shuai S, et al. Study of pore defect and mechanical properties in selective laser melted Ti6Al4 V alloy based on X-ray computed tomography. Mater Sci Eng A. 2020;797:139981. doi:10.1016/j.msea.2020.139981
  33. Nafar Dastgerdi J, Jaberi O, Remes H, et al. Fatigue damage process of additively manufactured 316 L steel using X-ray computed tomography imaging. Addit Manuf. 2023;70:103559. doi:10.1016/j.addma.2023.103559
  34. Sanaei N, Fatemi A. Defect-based fatigue life prediction of L-PBF additive manufactured metals. Eng Fract Mech. 2021;244:107541. doi:10.1016/j.engfracmech.2021. 107541
  35. Clijsters S, Craeghs T, Buls S, et al. In situ quality control of the selective laser melting process using a high-speed, real-time melt pool monitoring system. Int J Adv Manuf Technol. 2014;75(5-8):1089-1101. doi:10.1007/s00170- 014-6214-8
  36. Ye J, Poudel A, Liu J (Peter), et al. Machine learning aug- mented X-ray computed tomography features for volu- metric defect classification in laser beam powder bed fusion. Int J Adv Manuf Technol. 2023;126(7-8):3093- 3107. doi:10.1007/s00170-023-11281-9
  37. Withers PJ, Bouman C, Carmignato S, et al. X-ray com- puted tomography. Nat Rev Methods Prim. 2021;1:18. doi:10.1038/s43586-021-00015-4
  38. Wang Y, Yao Q, Kwok JT, et al. Generalizing from a few examples: a survey on few-shot learning. ACM Comput Surv. 2020b;53(3):1-34. doi:10.1145/3386252
  39. Salvati E, Tognan A, Laurenti L, et al. A defect-based physics- informed machine learning framework for fatigue finite life prediction in additive manufacturing. Mater Des. 2022;222:111089. doi:10.1016/j.matdes.2022.111089
  40. Romano S, Brückner-Foit A, Brandão A, et al. Fatigue properties of AlSi10Mg obtained by additive manufactur- ing: defect-based modelling and prediction of fatigue strength. Eng Fract Mech. 2018;187:165-189. doi:10. 1016/j.engfracmech.2017.11.002
  41. He K, Zhang X, Ren S, et al. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2016. http://image-net.org/challenges/LSVRC/2015/.
  42. Tan M, Le QV. Efficientnet: rethinking model scaling for convolutional neural networks. International Conference on Machine Learning; 2019. pp. 6105-6114.