Academia.eduAcademia.edu

Abstract

Artificial neural networks may probably be the single most successful technology in the last two decades which has been widely used in a large variety of applications. The purpose of this book is to provide recent advances of artificial neural networks in industrial and control engineering applications. The book begins with a review of applications of artificial neural networks in textile industries. Particular applications in textile industries follow. Parts continue with applications in materials science and industry such as material identification, and estimation of material property and state, food industry such as meat, electric and power industry such as batteries and power systems, mechanical engineering such as engines and machines, and control and robotic engineering such as system control and identification, fault diagnosis systems, and robot manipulation. Thus, this book will be a fundamental source of recent advances and applications of artificial neural networks in industrial and control engineering areas. The target audience includes professors and students in engineering schools, and researchers and engineers in industries.

References (559)

  1. Golob, D.; Osterman, D. P. & Zupan, J. (2008). Determination of Pigment combinations for Textile Printing Using Artificial Neural Networks. Fibers & Textiles in Eastern Europe, Vol.16, No.3, pp. 93-98, ISSN 1230-3666
  2. Guruprasad, R. & Behera, B. K. (2010). Soft Computing in Textiles. Indian Journal of Fibre & Textile Research, Vol.35, pp. 75-84, ISSN 0971-0426
  3. Hadizadeh, M.; Jeddi, A. A. A. & Amani Tehran, M. (2009). The Prediction of Initial Load- Extension Behavior of Woven Fabrics using Artificial Neural Network. Textile Research Journal, Vol.79, No.17, pp. 1599-1609, ISSN 0040-5175
  4. Huang, C. C. & Chang, K. T. (2001). Fuzzy Self-Organizing and Neural Network Control of Sliver Linear Density in a Drawing Frame. Textile Research Journal, Vol.71, No.11, pp. 987-992, ISSN 0040-5175
  5. Hui, C. L.; Lau, T. W.; Ng, S. F. & Chan, K. C. C. (2004). Neural Network Prediction of Human Psychological Perceptions of Fabric Hand. Textile Research Journal, Vol.74, No.5, pp. 375-383, ISSN 0040-5175
  6. Jeon, B. S.; Bae, J. H. & Suh, M. W. (2003). Automatic Recognition of Woven Fabric Patterns by an Artificial Neural Network. Textile Research Journal, Vol.73, No.7, pp. 645-650, ISSN 0040-5175
  7. Kang, T. J. & Kim, S. C. (2002). Objective Evaluation of the Trash and Color of Raw Cotton by Image Processing and Neural Network. Textile Research Journal, Vol.79, No.
  8. 9, pp. 776-782, ISSN 0040-5175
  9. Karras, D. A.; Karkanis, S. A. & Mertzios, B. G. (1998). Supervised and Unsupervised Neural Network Methods applied to Textile Quality Control based on Improved Wavelet Feature Extraction Techniques. International Journal of Computer Mathematics, Vol.67, No.1&2, pp. 169-181, ISSN 0020-7160
  10. Keshavaraj, R.; Tock, R.W. & Haycook, D. (1996).Airbag Fabric Material Modeling of Nylon and Polyester Fabrics Using a Very Simple Neural Network Architecture. Journal of Applied Polymer Science, Vol.60, pp. 2329-2338, ISSN 0021-8995
  11. Khan, Z.; Lim, A. E. K.; Wang, L.; Wang, X. & Beltran, R. (2002). An Artificial Neural Network-based Hairiness Prediction Model for Worsted Wool Yarns. Textile Research Journal, Vol.79, No.8, pp. 714-720, ISSN 0040-5175
  12. Kumar, A. (2003). Neural Network Based Detection of Local Textile Defects. Pattern Recognition, Vol.36, pp. 1645-1659, ISSN 0031-3203
  13. Kuo, C. F. J.; Hsiao, K. I. & Wu, Y. S. (2004). Using Neural Network Theory to Predict the Properties of Melt Spun Fibers. Textile Research Journal, Vol.74, No.9, pp. 840-843, ISSN 0040-5175
  14. Kuo, C. F. J. & Lee, C. J. (2003). A Back-Propagation Neural Network for Recognizing Fabric Defects. Textile Research Journal, Vol.73, No.2, pp. 147-151, ISSN 0040-5175
  15. Kuo, C. F. J.; Lee, C. J. & Tsai, C. C. (2003). Using a Neural Network to Identify Fabric Defects in Dynamic Cloth Inspection. Textile Research Journal, Vol.73, No.3, pp. 238 244, ISSN 0040-5175
  16. Kuo, C. F. J.; Su, T. L. & Huang, Y. J. (2007). Computerized Color Separation System for Printed Fabrics by using Backward-Propagation Neural Network. Fibers and Polymers, Vol.8, No.5, pp. 529-536, ISSN 1229-9197
  17. Leonard, J.; Pirotte, F. & Knott, J. (1998). Classification of Second Hand Textile Waste Based on Near-infrared Analysis and Neural Network. Melliand International, Vol.4, pp. 242-244, ISSN 0947-9163
  18. Lien, H. C. & Lee, S. (2002). A Method of Feature Selection for Textile Yarn Grading Using the Effective Distance Bettween Clusters. Textile Research Journal, Vol.72, No.10, pp. 870-878, ISSN 0040-5175
  19. Lin, J. J. (2007). Prediction of Yarn Shrinkage Using Neural Nets. Textile Research Journal, Vol.77, No.5, pp. 336-342, ISSN 0040-5175
  20. Liu, Y.; Liu, W. & Zhang, Y. (2001). Inspection of Defects in Optical Fibers based on Back- Propagation Neural Networks. Optics Communications, Vol.198, pp. 369-378, ISSN 0030-4018
  21. Liu, J.; Zuo, B.; Zeng, X.; Vroman, P. & Rabenasolo, B. (2010). Nonwovens Uniformity Identification using Wavelet Texture Analysis and LVQ Neural Network. Expert Systems with Applications, Vol.37, pp.2241-2246, ISSN 0957-4174
  22. Liu, J.; Zuo, B.; Vroman, P.; Rabenasolo, B.; Zeng, X. & Bai, L. (2010). Visual Quality Recognition of Nonwovens using Wavelet Texture Analysis and Robust Bayesian Neural Network. Textile Research Journal, Vol.80, No.13, pp.1278-1289, ISSN 0040-5175
  23. Majumdar, P. K. & Majumdar, A. (2002). Predicting the Breaking Elongation of Ring Spun Cotton Yarns using Mathematical, Statistical, and Artificial Neural Network Models. Textile Research Journal, Vol.74, No.7, pp. 652-655, ISSN 0040-5175
  24. Mokhtari Yazdi, M.; Semnani, D. & Sheikhzadeh, M. (2009). Moisture and Heat Transfer in Hybrid Weft Knitted Fabric with Artificial Intelligence. Journal of Applied Polymer Science, Vol.114, pp. 1731-1737, ISSN 0021-8995
  25. Moradian, S. & Amani Tehran, M. (2000). Predicting the Degree of Metamerism by Artificial Neural Network, Proceedings of Fifth Seminar on Polymer Science and Technology, pp. 153-156, Amirkabir University of Technology, Tehran, Iran, September 12-14, 2000
  26. Mori, T. & Komiyama, J. (2002). Evaluating Wrinkled Fabrics with Image Analysis and Neural Networks. Textile Research Journal, Vol.72, No.5, pp. 417-422, ISSN 0040-5175
  27. Murrells, C. M.; Tao, X. M.; Xu, B. G. & Cheng, K. P. S. (2009). An Artificial Neural Network Model for the Prediction of Spirality of Fully Relaxed Single Jersey Fabrics. Textile Research Journal, Vol.79, No.3, pp. 227-234, ISSN 0040 5175
  28. Nirmal, U. (2010). Prediction of Friction coefficient of Treated Betelnut Fiber Reinforced polyester (T-BFRP) Composite using Artificial Neural Networks. Tribology International, Vol.43, pp. 1417-1429, ISSN 0301-679X
  29. Onal, L.; Zeydan, M.; Korkmaz, M. & Meeran, S. (2009). Predicting the Seam Strength of Notched Webbings for Parachute Assemblies using the Taguchi's Design of Experiment and Artificial Neural Networks. Textile Research Journal, Vol.79, No.5, pp. 468-478, ISSN 0040-5175
  30. Pynckels, F.; Kiekens, P.; Sette, S.; Van Langenhove, L. & Impe, K. (1995). Use of NeuralNets for Determining the Spinnability of Fibers. Journal of Textile Institute, Vol.86, No.3, pp. 425-437, ISSN 0040-5000
  31. Rawal, A.; Majumdar, A.; Anand, S. & Shah, T. (2009). Predicting the Properties of Needlepunched Nonwovens using Artificial Neural Network. Journal of Applied Polymer Science, Vol.112, pp. 3575-3581, ISSN 0021-8995
  32. Semnani, D. & Vadood, M. (2010). Improvement of Intelligent Methods for Evaluating the Apparent Quality of Knitted Fabrics. Engineering Applications of Artificial Intelligence, Vol.23, pp. 217-221, ISSN 0952-1976
  33. References
  34. Box, G. E. P. & Behnken, D. W. (1960). Some New Three Level Designs for the Study of Quantitative Variables. Technometrics, Vol.2, No.4, 455-475, ISSN 0040-1706
  35. Debnath, C. R. & Roy, A. N. (1999). Mechanical behaviour of needle punched textiles of jute nonwovens. Indian Textile Journal, Vol.110, No.3, 50-53, ISSN 0019-6436
  36. Debnath, S.; Madhusoothanan, M. & Srinivasmoorthy, V. R. (2000a). Modelling of tensile properties of needle-punched nonwovens using artificial neural networks. Indian Journal of Fibre & Textile Research, Vol.25, No.1, 31-36, ISSN 0971-0426
  37. Debnath, S.; Madhusoothanan, M. & Srinivasmoorthy, V. R. (2000b). Prediction of air permeability of needle-punched nonwoven fabrics using artificial neural network and empirical models. Indian Journal of Fibre and Textile Research, Vol.25, No.4, 251- 255, ISSN 0971-0426
  38. Debnath, S., Nag, D., De, S. S., Ganguly, P. K., & Ghosh, S. K. (2006). Studies on mechanical and hydraulic properties of JGT for geo-technical applications. Journal of The Institution of Engineers (India), Vol.TX86, No.2, 46-49, ISSN 0257-4438
  39. Debnath, S. & Madhusoothanan, M. (2007). Compression behaviour of jute-polypropylene blended needle-punched nonwoven fabrics. Indian Journal of Fibre and Textile Research, Vol.32, No.4, 427-433, ISSN 0971-0426
  40. Debnath, S. & Madhusoothanan, M. (2008). Modeling of compression properties of needle- punched nonwoven fabrics using artificial neural network. Indian Journal of Fibre & Textile Research, Vol.33, No.4., 392-399, ISSN 0971-0426
  41. Debnath, Sanjoy & Madhusoothanan, M. (2009a). Compression properties of polyester needlepunched fabric. Journal of Engineered Fibres and Fabrics, Vol.4, No.4, 14-19, ISSN 1558-9250
  42. Debnath, S. & Madhusoothanan, M. (2009b). Studies on compression behaviour of polypropylene needle punched non-woven fabrics. Journal of The Institution of Engineers (India), Vol.TX89, No.2, 34-37, ISSN 0257-4438
  43. Debnath, Sanjoy & Madhusoothanan, M. (2010a). Water absorbency of jute-polypropylene blended needle-punched nonwoven. Journal of Industrial Textiles, Vol.39, No.3, 215- 231, ISSN 1528-0837, DOI: 10.1177/1528083709347121.
  44. Debnath, Sanjoy & Madhusoothanan, M. (2010b). Thermal insulation, compression and air permeability of polyester needle-punched nonwoven. Indian Journal of Fibre and Textile Research, Vol.35, No.1, 38-44, ISSN 0971-0426
  45. Fan, J. & Hunter, L. (1998). A worsted fabric expert system, Part-2: An artificial neural network model for predicting the properties of worsted fabrics. Textile Research Journal, Vol.68, No.10., 763-771, ISSN 0040-5175
  46. Gong, R. H. & Chen, Y. (1999). Predicting the performance of fabrics in garment manufacturing with artificial neural networks. Textile Research Journal, Vol.69, No.7., 477-482, ISSN 0040-5175
  47. Hearle, J.W.S. & Sultan, M.A.I. (1967). A study of needled fabrics, Part-I: Experimental methods and properties. Journal of Textile Institute, Vol.58, Part-1, No.6, 251-265, ISSN 0040-5000
  48. Kothari, V. K., & Das, A. (1992). Compression behaviour of nonwoven geotextiles. Geotextiles and Geomembranes, Vol.11, 235-253, ISSN 0266-1144
  49. Kothari, V. K., & Das, A. (1993). Compression behaviour of layered needle-punched nonwoven geotextiles. Geotextiles and Geomembranes, Vol.12, 179-191, ISSN 0266- 1144
  50. Luo, C., and David, A. L. (1995). Yarn strength prediction using neural networks, Part I: Fibre properties and yarn strength relationship. Textile Research Journal, Vol.65, No.9., 495-500, ISSN 0040-5175
  51. Midha, V. K., Alagirusamy, R. & Kothari, V. K. (2004). Studied on properties of hollow polyester needle-punched fabrics. Indian Journal of Fibre & Textile Research, Vol.29, No.4., 391-399, ISSN 0971-0426
  52. Park, S. W., Hwang, Y. G., Kang, B. C. & Yeo, S. W. (2000). Applying fuzzy logic and neural networks to total hand evaluation of knitted fabrics. Textile Research Journal, Vol.70, No.8., 675-681, ISSN 0040-5175
  53. Postle, R. (1997). Fabric catagorisation by means of objective measurement and neural networks. Textile Asia, Vol.28, No. 2, 33-34, ISSN 0049-3554
  54. Rajamanickam, R., Hansen, S. M. & Jayaraman, S. (1997). Analysis of the modelling methodologies for predicting the strength of air-jet spun yarns. Textile Research Journal, Vol.67, No.1., 39-44, ISSN 0040-5175
  55. Ramesh, M. C., Rajamanickam, R., & Jayaraman, S. (1995). The Prediction of yarn tensile properties by using artificial neural networks. Textile Research Journal, Vol.86, No.3., 459-469, ISSN 0040-5175
  56. Sao, K.P. & Jain, A. K. (1995). Mercerization and crimp formation in jute. Indian Journal of Fibre and Textile Research, Vol.20, No.4, 185-191, ISSN 0971-0426
  57. Sengupta, A. K., Sinha, A. K. & Debnath, C. R. (1985). Needle-punched non-woven jute floor coverings: Part III -Air permeability and thermal conductivity. Indian Journal of Fibre & Textile Research, Vol.10, No.4., 147-151, ISSN 0971-0426
  58. Subramaniam, V., Malathi, Lokanadam, B., Kumari. N. & Chandramohan, G. (1990). A simple method of measuring the handle of fabrics and softness of yarns. Journal of Textile Institute, Vol.81, Part-1, No.1., 94-97, ISSN 0040-5000
  59. Vangheluwe, L., Sette, S., & Pynckels, F. (1993). Assessment of set marks by means of neural nets. Textile Research Journal, Vol.63, No.4., 244-246, ISSN 0040-5175
  60. Vangheluwe, L., Sette, S., & Kiekens P. (1996). Modelling relaxation behaviour of yarns, Part-II: Backpropagation neural network model. Journal of Textile Institute, Vol.87, Part-1, No.2., 305-310, ISSN 0040-5000
  61. Wen Chen P., Chun Liang T., Fai You H., Li Sun W., Chueh Wang N., Chyilin H. and Cherng Lien R. (1998). Classifying textile faults with a back propagation neural network using power spectra. Textile Research Journal, Vol.68, No.2., 121-126, ISSN 0040-5175
  62. Xu, B., Fang, C. & Watson, M. D. (1999). Clustering analyses for cotton trash classification. Textile Research Journal, Vol.69, No.9., 656-662, ISSN 0040-5175
  63. Zhu, R. & Ethridge, M. D. (1997). Predicting hairiness for ring and rotor spun yarns and analysing the impact of fibre properties. Textile Research Journal, Vol.67, No.9., 694- 698, ISSN 0040-5175
  64. References
  65. Aguilera, J.A.; Aragón, C.; Cristoforetti, G. & Tognoni, E. (2009) Application of calibration- free laser-induced breakdown spectroscopy to radially resolved spectra from a copper-based alloy laser-induced plasma, Spectrochimica Acta Part B, Vol. 64, No. 7, (July 2009) pp. 685-689, ISSN: 05848547
  66. Belkov, M.V.; Burakov, V.S.; De Giacomo, A.; Kiris, V.V.; Raikov, S.N. & Tarasenko, N.V. (2009) Comparison of two laser-induced breakdown spectroscopy techniques for total carbon measurement in soils, Spectrochimica Acta Part B, Vol. 64, No. 9, (September 2009) pp. 899-904, ISSN: 05848547
  67. Bousquet, B.; Sirven, J.-B. & Canioni, L. (2007) Towards quantitative laser-induced breakdown spectroscopy analysis of soil samples, Spectrochimica Acta Part B, Vol. 62, No. 12, (December 2007) pp. 1582-1589, ISSN: 05848547
  68. Cho, H.H.; Kim, Y.J.; Jo, Y.S.; Kitagawa, K.; Arai, N. & Lee, Y.I. (2001) Application of laser- induced breakdown spectrometry for direct determination of trace elements in starch-based flours, Journal of Analytical Atomic Spectrometry, Vol. 16, No. 6, (June 2001) pp. 622-627, ISSN: 02679477
  69. Ciucci, A.; Corsi, M.; Palleschi, V.; Rastelli, S.; Salvetti, A. & Tognoni, E. (1999) New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy, Applied Spectroscopy, Vol. 53, No. 8, (August 1999) pp. 960-964, ISSN: 00037028
  70. Clegg, S.M.; Sklute, E.; Dyar, M.D.; Barefield, J.E. & Wien, R.C (2009) Multivariate analysis of remote laser-induced breakdown spectroscopy spectra using partial least squares principal, component analysis, and related techniques, Spectrochimica Acta Part B, Vol. 64, No. 1, (January 2009) pp. 79-88, ISSN: 05848547
  71. Cremers, D.A. & Radziemski, L.J. (2006) Handbook of Laser-Induced Breakdown Spectroscopy, John Wiley & Sons, ISBN: 978-0-470-09299-6, USA
  72. Eppler, A.S.; Cremers, D.A.; Hickmott, D.D.; Ferris, M.J. & Koskelo, A.C. (1996) Matrix effects in the detection of Pb and Ba in soils using laser-induced breakdown spectroscopy, Applied Spectroscopy, Vol. 50, No. 9, (September 1996) pp. 1175-1181, ISSN: 00037028
  73. Escudero-Sanz, I.; Ahlers, B. & Courrèges-Lacoste, G.B. (2008) Optical design of a combined Raman-laser-induced-breakdown-spectroscopy instrument for the European Space Agency ExoMars Mission, Optical Engineering, Vol. 47. No. 3, (March 2008) pp. 033001-1 -033001-11, ISSN: 00913286
  74. Ferreira, E. C.; Milori, D.M.B.P.; Ferreira, E.J.; Da Silva, R.M. & Martin-Neto, L. (2008) Artificial neural network for Cu quantitative determination in soil using a portable laser induced breakdown spectroscopy system, Spectrochimica Acta Part B, Vol. 63., No. 10, (October 2008) pp. 1216-1220, ISSN: 05848547
  75. Gaft, M.; Nagli, L.; Fasaki, I.; Kompitsas, M. & Wilsch, G. (2009) Laser-induced breakdown spectroscopy for on-line sulfur analyses of minerals in ambient conditions, Spectrochimica Acta Part B, Vol. 64, No. 10, (October 2009) pp. 1098-1104, ISSN: 05848547
  76. Garrelie, F. & Catherinot, A. (1999) Monte Carlo simulation of the laser-induced plasma- plume expansion under vacuum and with a background gas, Applied Surface Science, Vol. 138-139, No. 1-4, (January 1999) pp. 97-101, ISSN: 01694332
  77. Gurney K. (1997) An Introduction to Neural Networks, UCL Press, ISBN: 0-203-45151-1, UK Harmon, R.S.; DeLucia, F.C.; McManus, C.E.; McMillan, N.J.; Jenkins, T.F.; Walsh, M.E. & Miziolek, A. (2006) Laser-induced breakdown spectroscopy -An emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications, Applied Geochemistry, Vol. 21, No. 5, (May 2006) pp. 730-747, ISSN: 08832927
  78. References
  79. Abdalla, J. A., & Hawileh, Rami., (in press). Modeling and simulation of low-cycle fatigue life of steel reinforcing bars using artifiial neural network. Journal of the Franklin Institute, ISSN 0016-0032
  80. Bahrami, A., Mousavi Anijdan, S. H., & Ekrami, A., (2005). Prediction of Mechanical Properties of DP Steels Using Neural Network Model. Journal of Alloys and Compounds, Vol.392, No.1-2, (April 2005), pp. 177-182, ISSN 0925-8388
  81. Bucar, T., Nagode, M., & Fajdiga, M., (2006). A Neural Network Approach to Describing the Scatter of S-N Curves. International Journal of Fatigue, Vol.28, No.4, (April 2006), pp. 311-323, ISSN 0142-1123
  82. Fogel, D. B., (1994). An Introduction to Simulated Evolutionary Optimization. IEEE Transactions on Neural Networks, Vol.5, No.1, (1994), pp. 3-14, ISSN 1045-9227
  83. Genel, K., (2004). Application of Artificial Neural Network for Predicting Strain-Life Fatigue Properties of Steels on the Basis of Tensile Data. International Journal of Fatigue, Vol.26, No.10, (October 2004), pp. 1027-1035, ISSN 0142-1123
  84. Ghajar, R.; Alizadeh, J., & Naserifar, N., (2008). Estimation of cyclic strain hardening exponent and cyclic strength coefficient of steels by artificial neural networks, Proceedings of ASME 2008 International Mechanical Engineering Congress and Exposition, pp. 639-648, ISBN 978-0-7918-4873-9, Boston, Massachusetts, USA, November 2-6, 2008.
  85. Hagan, M. T., & Menhaj, M. B., (1994). Training Feedforward Networks with the Marquardt Algorithm. IEEE Transactions on Neural Networks, Vol.5, No.6, (1994), pp. 989-993, ISSN 1045-9227
  86. Han, Y. L., (1995). Artificial Neural Network Technology as a Method to Evaluate the Fatigue Life of Weldments with Welding Defects. International Journal of Pressure Vessels & Piping, Vol.63, No.2, (1995), pp. 205-209, ISSN 0308-0161
  87. Kim, K. S., Chen, X., Han, C., & Lee, H. W., (2002). Estimation Methods for Fatigue Properties of Steels under Axial and Torsional Loading. International Journal of Fatigue, Vol.24, No.7, (July 2002), pp. 783-793, ISSN 0142-1123
  88. Koker, R., Altinkok, N., & Demir, A., (2007). Neural network based prediction of mechanical properties of particulate reinforced metal matrix composites using various training algorithms. Materials and Design, Vol.28, No.2, (2007), pp. 616-627, ISSN 0264-1275
  89. Lee, J. A., Almond, D. P., & Harris, B., (1999). The Use of Neural Networks for the Prediction of Fatigue Lives of Composite Materials. Composites: PartA: Applied Scienceand Manufacturing, Vol.30, No.10, (October 1999), pp. 1159-1169, ISSN 1359-835X
  90. Liao, X., Xu, W., & Gao, Z., (2008). Application of Artificial Neural Network to Forecast the Tensile Fatigue Life of Carbon Material. Key Engineering Materials, Vol.385-387, (July 2008), pp. 385-387, ISSN 1662-9795
  91. Malinov, S., Sha, W., & McKeown, J. J., (2001). Modelling the Correlation Between Processing Parameters and Properties in Titanium Alloys Using Artificial Neural Network. Computational Materials Science, Vol.21, No.3, (July 2001), pp. 375-394, ISSN 0927-0256
  92. Mathew, M. D., Kim, D. W., & Ryu, W. S., (2008). A neural network model to predict low cycle fatigue life of nitrogen-alloyed 316L stainless steel. Materials Science and Engineering A, Vol.474, No.1-2, (February 2008), pp. 247-253, ISSN 0921-5093
  93. Mathur, S., Gopeand, P. C., & Sharma, J. K., (2007). Prediction of Fatigue Lives of Composites Material by Artificial Neural Network, Proceedings of the SEM2007 Annual Conference and Exposition, Paper 260, Springfield, Massachusetts, USA, June4-6, 2007
  94. Mousavi Anijdan, S. H., Bahrami, A., & Mater, J., (2005). A New Method in Prediction of TCP Phases Formation in Superalloys. Materials Science and Engineering A, Vol.396, No.1-2, (April 2005), pp. 138-142, ISSN 0921-5093
  95. Muc, A., & Gurba, W., (2001). Genetic Algorithms and Finite Element Analysis in Optimization of Composite Structures. Composite Structures, Vol.54, No.2-3, (November-December 2001), pp. 275-281, ISSN 0263-8223
  96. Park, J. M., & Kang, H. T., (2007). Prediction of Fatigue Life for Spot Welds Using Back- Propagation Neural Networks. Materials and Design, Vol.28, No.10, (2007), pp. 2577- 2584, ISSN 0261-3069
  97. Pleune, T. T., & Chopra, O. K., (2000). Using Artificial Neural Networks to Predict the Fatigue Life of Carbon and Low-Alloy Steels. Nuclear Engineering and Design, Vol.197, No.1-2, (April 2000), pp. 1-12, ISSN 0029-5493
  98. Roessle, M. L., & Fatemi, A., (2000). Strain-Controlled Fatigue Properties of Steels and Some Simple Approximations. International Journal of Fatigue, Vol.22, No.6, (July 2000), pp. 495-511, ISSN 0142-1123
  99. SAE Standards (2002). Technical Report on Low Cycle Fatigue Properties: Ferrous and Nonferrous Materials, SAE, Report Number: J1099, Warren dale, PA
  100. Sha, W., & Edwards, K. L., (2007). The use of artificial neural networks in materials science based research. Materials and Design, Vol.28, No.6, (2007), pp. 1747-1752, ISSN 0261- 3069
  101. Song, R. G., Zhang, Q. Z., Tseng, M. K., & Zhang, B. J., (1995). The Application of Artificial Neural Networks to the Investigation of Aging Dynamics in 7175 Aluminium Alloys. Materials Science and Engineering C, Vol.3, No.1, (October 1995), pp. 39-41, ISSN 0928-4931
  102. Srinivasan, V. S., Valsan, M., Roa, K. B. S., Mannan, S. L., & Raj, B., (2003). Low Cycle Fatigue and Creep-Fatigue Interaction Behavior of 316L(N) Stainless Steel and Life Prediction by Artificial Neural Network Approach. International Journal of Fatigue, Vol.28, No.12, (December 2003), pp. 1327-1338, ISSN 0142-1123
  103. Stephens, R. I., Fatemi, A., Stephens, R. R., & Fuchs, H. O., (2001). Metal Fatigue in Engineering, John Wiley & Sons, ISBN 9780471510598, Canada
  104. Venkatessh, V., & Rack, H. J., (1999). A Neural Network Approach to Elevated Temperature Creep-Fatigue Life Prediction. International Journal of Fatigue, Vol.21, No.3, (March 1999), pp. 225-234, ISSN 0142-1123
  105. Wong, K. P., & Wong, Y. W., (1995). Thermal Generator Scheduling Using Hybrid Genetic/ Simulated-Annealing Approach. IEEE Proceedings on Generation, Transmission and Distribution, Vol.142, No.4, (July 1995), pp. 372-380, ISSN 1350-2360
  106. References
  107. Altinkok N. & Korker R. N. (2004). Neural Network Approach to Prediction of Bending Strength and Hardening Behaviour of Particulate Reinforced (Al-Si-Mg)
  108. Aluminium Matrix Composites. Materials and Design, Vol. 25, No. 7, Oct, 2004, pp. 595-602, ISSN 0261-3069
  109. Altinkok N. & Korker R. N. (2005). Mixture and Pore Volume Fraction in Al 2 O 3 /SiC Ceramic Cake Using Artificial Neural Networks. Materials and Design, Vol. 26, No. 4, Jun, 2005, pp. 305-311, ISSN 0261-3069
  110. Gen M. & Cheng R. (2000). Genetic algorithm and Engineering Optimization, Wiley, ISBN 0-471- 31531-1, New York
  111. Gu X.Q.; Yi D.X & Liu C.H. (2006). Optimization of Topological Structure and Weight Value of Artifical Neural Network using Genetic Algorithm. Journal of Guangdong University of Technology, Vol. 23, No. 4, 2006, pp. 64-69, ISSN 1007-7162 (in Chinese)
  112. Gupta J.N.D. & Sexton R.S. (1999). Comparing Back propagation with a Genetic Algorithm for Neural Network Training. The International Journal of Management Science. Vol. 27, Dec, 1999, pp. 679-684, ISSN 1226-0797
  113. Huang C.Z.; Zhang L.; He L.; Sun J.; Fang B. & B. Zou. J. (2002). A Study on the Prediction of the Mechanical Properties of a Ceramic Tool Based on an Artificial Neural Network. Journal of Materials Processing Technology, Vol. 129, Oct, 2002, pp. 399-402, ISSN 0924-0136
  114. Jiang X. & Adeli H. (2004). Clustering-Neural Network Models for Freeway Work Zone Capacity Estimation. International Journal of Neural Systems, Vol. 14, No. 3, Jun, 2004, pp. 147-163, ISSN 0129-0657
  115. Kim B. & Bae J. (2005). Prediction of Plasma Processes Using Neural Network and Genetic Algorithm. Solid-State Electronics, Vol. 49, Oct, 2005, pp. 1576-1580, ISSN 0038-1101
  116. Mousavi Anijdan S.H.; Madaah-Hosseini H.R. & Bahrami A. (2007). Flow stress Optimization for 304 Stainless Steel under Cold and Warm Compression by Artificial Neural Network and Genetic Algorithm. Materials and Design, Vol. 28, 2007, pp. 609-615, ISSN 0261-3069
  117. Ozcelik B.; Oktem H. & Kurtaran H. (2005). Surface Roughness in End Milling Inconel 718 by Coupling Neural Network Model and Genetic Algorithm. The International Journal of Advanced Manufacturing Technology, Vol. 27, 2005, pp. 234-241, ISSN 0268- 3768
  118. Scott D.J.; Coveney P.V.; Kilner J.A.; Rossing J.C.H.; Alford N.M. & Ceram J. (2007). Prediction of the Functional Properties of Ceramic Materials from Composition Using Artificial Neural Networks. Journal of the European Ceramic Society, Vol. 27, Dec, 2007, pp. 4425-4435, ISSN 0955-2219
  119. Sexton R.S.; Dorsey R.E. & Johnson J.D. (1998). Toward Global Optimization of Neural Network: A Comparison of the Genetic Algorithm and Backpropagation. Decision Support Systems. Vol. 22, Feb, 1998, pp. 171-185, ISSN 0167-9236
  120. Yao X. (1999). Evolving Artificial Neural Network, Proceedings of IEEE, pp. 1423-1447, ISBN 0018-9219, Sep 1999, IEEE Press. Vol. 87
  121. Yen G.& Lu H. M. (2002). Hierarchical Genetic Algorithm for Near-Optimal Feed Forward Neural Network Design. International Journal Neural Systems, Vol. 12, No. 1, Feb, 2002, pp. 31-43, ISSN 0129-0657
  122. Zemin F.; Jianhua M. & Lin C. (2010). Using Genetic Algorithm-Back Propagation Neural Network Prediction and Finite-element Model Simulation to Optimize the Process of Multiple-step Incremental Air-bending Forming of Sheet Metal. Materials and Design, Vol. 31, Jan, 2010, pp. 267-277, ISSN 0261-3069
  123. Zhu D.Q. & Shi H. (2006). The Principle and Application of Artificial Neural Networks, Science Press, ISBN 7-03-016570-5, Beijing (in Chinese)
  124. Botlani-Esfahani.
  125. M, Toroghinejad. M. R. and Abbasi. Sh. (2009b) Artificial Neural Network Modeling the Tensile Strength of Hot Strip Mill Products. ISIJ International 49:10, 1583-1587
  126. Doan. C. D. and Yuiliong. S. (2004) Generalization for Multilayer Neural Network Bayesian Regularization or Early Stopping. Proc. of Asia Pacific Association of Hydrology and Water Resources 2nd Conference, APHW, Singapore, 1
  127. Gonzalez. JEG. (2002) Study of the effect of hot rolling processing parameters on the variability of HSLA steels, Master thesis, University of Pittsburgh, USA Hulka. K. (2003): Niobium Information, 17/98, http://www.cbmm.com.br Keytosteel.com. Control of high strength low alloy (HSLA) steel properties. www. keytosteel.com
  128. Lampinen. J. and Vehtari. A. (2001) Bayesian techniques for neural networks -review and case studies. In K. Wang, J Grundespenkis, and A. Yerofeyev, editors, Applied Computational Intelligence to Engineering and Business, 7-15.
  129. MacKay DJC. (1992) A practical Bayesian framework for back-propagation networks. Neural Computation. 4, 415-47.
  130. MathWorks,Inc.http://www.mathworks.com/access/helpdesk/help/pdf- doc/nnet/nnet.pdf, Nat-ick, MA, USA
  131. MEYER, L (2001). History of Niobium as a microalloying element." In: Proceedings of the International Symposium Niobium 2001. Niobium Science and Technology. Niobium 2001 Ltd. Bridgeville: Pa, USA. 359-377
  132. Preloscan. A., Vodopivec. F., Mamuzic. I. (2002) Fine-Grained Structural Steel with Controlled Hot Rolling. Materiali in Tehnologije, 36, 181.
  133. Parker. S.V. (1997) Modeling phase transformation in hot-rolling steels. PhD Thesis, University of Cambridge, UK
  134. Ryu. J. (2008). Model for mechanical properties of hot-rolled steels, Master thesis, Pohang University of Science and Technology, Korea
  135. Singh. S. B., Bhadeshia. H. K. D. H, MacKay. D. J. C., Carey. H, and Martin. I. (1998) Neural Network Analysis of Steel Plate Processing. Ironmaking Steelmaking, 25, 355.
  136. Umemoto. M., Liu. Z.G., Masuyama. K., Tsuchiya. K. (2001): Influence of Alloy Additions on Production and Propeties of Bulk Centite. Scripta. Materialia., 45, 39.
  137. Zhang. Y. B., Ren. D.Y. (2003) Distribution of strong carbide forming elements in hard facing weld metal. Materials. Science and Technology., 19:8. 1029-103.
  138. Vehtari. A., and Lampinen. J. (2002), Bayesian model assessment and comparison using cross-validation predictive densities, Neural Computation, 14, 2439.
  139. Xu. M., Zeng. G., Xu. X., Huang. G., Jiang. R. and Sun. W. (2006) Application of Bayesian Regularized BP Neural Network Model for Trend Analysis, Acidity and Chemical Composition of Precipitation in North Carolina. Water, Air, and Soil Pollution, 172, 167. artificial neural network . International Journal of Coal Geology, Volume 73, Issue 2, 130-138.
  140. Bragg, L.J. ; Oman, J.K. ; Tewalt, S.J. ; Oman, C.J. ; Rega, N.H. ; Washington, P.M. & Finkelman, R.B. (2009). U.S. Geological Survey Coal Quality (COALQUAL) database version 2.0. open-file report 97-134, http://energy.er.usgs.gov/ products/databases/CoalQual/index.htm.
  141. Chong-lin, W. ; Cao-yuan, M. ; Jian-hua, L. ; Guo-xin, L. ; Dong-liang, Z. & Jie-jie, T. (2009). Study on coal face stray current safety early warning based on ANFIS, Procedia Earth and Planetary Science, Volume 1, Issue 1, 1332-1336.
  142. Chen, S. ; Cowan, C.F.N. & Grant, P.M. (1991). Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans. Neural Networks, 2 (2), 302-309.
  143. Custer, V.F. (1951). Uber die Berechnung des Heizwertes von Kohlen der Immediatzusammensetzung. Brennst.-Chem, 32, 19-20.
  144. Channiwala, S.A. & Parikh, P.P. (2002). A unified correlation for estimating HHV of solid, Liquid and gaseous fuels. Fuel, 81, 1051-1063.
  145. Chehreh Chelgani, S. ; Hower, J.C. ; Jorjani, E. ; Mesroghli, Sh. & Bagherieh, A.H. (2008). Prediction of coal grindability based on petrography, proximate and ultimate analysis using multiple regression and artificial neural network models, Fuel Processing Technology, Volume 89, Issue 1, 13-20.
  146. Chehreh Chelgani, S. ; Mesroghli, Sh. & Hower, J.C. (2010). Simultaneous prediction of coal rank parameters based on ultimate analysis using regression and artificial neural network. International Journal of Coal Geology, Volume 83, Issue 1, 31-34.
  147. Esen, H. & Inalli, M. (2010). ANN and ANFIS models for performance evaluation of a vertical ground source heat pump system , Expert Systems with Applications, Volume 37, Issue 12, 8134-8147.
  148. Given, P.H. ; Weldon, D. & Zoeller, J.H. (1986). Calculation of calorific values of coals from ultimate analyses: theoretical basis and geochemical implications. Fuel, 65, 849-854.
  149. Hower, J.C. & Eble, C.F. (1996). Coal quality and coal utilization. Energy Miner. Div. Hourglass 30 (7), 1-8.
  150. Hansen, J.V. & Meservy, R.D. (1996). Learning experiments with genetic optimization of a generalized regression neural network. Decis. Support Syst., 18 (3-4), 317-325.
  151. Jorjani, E., Chehreh Chelgani, S. & Mesroghli, Sh. (2007). Prediction of microbial desulfurization of coal using artificial neural networks , Minerals Engineering, Volume 20, Issue 14, 1285-1292.
  152. Jorjani, E. ; Mesroghli, Sh. & Chehreh Chelgani, S. (2008). Prediction of operational parameters effect on coal flotation using artificial neural network. Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material, Volume 15, Issue 5, 528-533.
  153. Jantzen J. (1998). Neurofuzzy modelling, Technical University of Denmark, Department of Automation, Tech. report no 98-H-874, 1-28.
  154. Jang, J.S.R. & Sun, C.T. (1995). Neuro-fuzzy modeling and control, Proceedings of the IEEE, 83(3): 378-406.
  155. Khandelwal, M. & Singh, T.N. (2010). Prediction of macerals contents of Indian coals from proximate and ultimate analyses using artificial neural networks, Fuel, Volume 89, Issue 5, 1101-1109.
  156. Karacan, C.O. (2007). Development and application of reservoir models and artificial neural networks for optimizing ventilation air requirements in development mining of coal seams, International Journal of Coal Geology, Volume 72, Issues 3-4, 221-239.
  157. Mason, D.M. & Gandhi, K.N. (1983). Formulas for calculating the calorific value of coal and chars. Fuel Process. Technol. 7, 11-22.
  158. Miller, B.G. (2005). Coal Energy Systems, Elsevier Academic Press, ISBN: 0-12-497451-1, USA.
  159. Mazumdar, B.K. (1954). Coal systematics: deductions from proximate analysis of coal part I. J. Sci. Ind. Res., 13B (12), 857-863.
  160. Majumder, A.K. ; Jain, R. ; Banerjee, J.P. & Barnwal, J.P. (2008). Development of a new proximate analysis based correlation to predict calorific value of coal. Fuel, 87, 3077-3081.
  161. Mesroghli, Sh. ; Jorjani, E. & Chehreh Chelgani, S. (2009). Estimation of gross calorific value based on coal analysis using regression and artificial neural networks. International Journal of Coal Geology, 79, 49-54.
  162. Patel, S.U. ; Kumar, B.J. ; Badhe, Y.P. ; Sharma, B.K. ; Saha, S. ; Biswas, S. ; Chaudhury, A. ; Tambe, S.S. & Kulkarni, B.D. (2007). Estimation of gross calorific value of coals using artificial neural. Fuel, Volume 86, Issue 3, 334-344.
  163. Pena, B. ; Teruel, E. & Diez, L.I. (2010). Soft-computing models for soot-blowing optimization in coal-fired utility boilers, Applied Soft Computing, In Press, Corrected Proof.
  164. Parikh, J. ; Channiwala, S.A. & Ghosal, G.K. (2005). A correlation for calculating HHV from proximate analysis of solid fuels. Fuel, 84, 487-494.
  165. Soltani, F. ; Kerachian, R. & Shirangi, E. (2010). Developing operating rules for reservoirs considering the water quality issues: Application of ANFIS-based surrogate models, Expert Systems with Applications, Volume 37, Issue 9, 6639-6645.
  166. Specht, D.F. (1991). A generalized regression neural network. IEEE Trans. Neural Netw., 2(5), 568-576.
  167. Salehfar, H. & Benson, S.A. (1998). Electric utility coal quality analysis using artificial neural network techniques, Neurocomputing, Volume 23, Issues 1-3, 195-206.
  168. Spooner, C.E. (1951). Swelling power of coal. Fuel, 30, 193-202. SPSS. (2004). Help Files, Version 13, SPSS Inc.
  169. Wu, Q.; Ye, S. & Yu, J. (2008). The prediction of size-limited structures in a coal mine using Artificial Neural Networks. International Journal of Rock Mechanics and Mining Sciences, Volume 45, Issue 6, 999-1006.
  170. Wasserman, P.D. (1993). Advanced methods in neural computing. Van Nostrand Reinhold, New York, 155-161.
  171. Zhenyu, Z. & Yongmo, X. (1996). Introduction to fuzzy theory, neural networks, and their applications. Beijing/Nanning: Tsinghua University Press/Guangxi Science and Technology Press, in Chinese.
  172. Sahu, H.B. ; Padhee, S. & Mahapatra, S.S. (2010). Prediction of spontaneous heating susceptibility of Indian coals using fuzzy logic and artificial neural network models, Expert Systems with Applications, In Press, Uncorrected Proof.
  173. References
  174. Brown, B. M. (1987). A Comparison of AC and DC Resistance Welding of Automotive Steels. The Welding Journal, Vol. 66, No. 1, January 1987, pp. 8-23
  175. Deželak, K.; Pihler, J.; Štumberger, G.; Klopčič, B. & Dolinar, D. (2010). Artificial Neural Network Applied for Detection of Magnetization Level in the Iron core of a Welding Transformer. IEEE Trans. On Magnetics, Vol. 46, No. 2, February 2010, pp. 634-637
  176. Deželak, K.; Klopčič, B.; Štumberger, G. & Dolinar, D. (2008). Detecting Saturation Level in the Iron Core of a Welding Transformer in a Resistance Spot-Welding System. Journal of Magnetism and Magnetic Materials, Vol. 320, No. 20, October 2008, pp. 878- 883
  177. Deželak, K.; Štumberger, G.; Klopčič, B.; Dolinar, D. & Pihler, J. (2008). Iron Core Saturation Detector Supplemented by an Artificial Neural Network. Prz. Elektrotech., Vol. 84, No. 12, 2008, pp. 157-159
  178. Hassoun, H. M. (1995). Fundamentals of Artificial Neural Networks, Library of Congress Cataloging, 0-262-08239-X, Massachusetts Institute of Technology Hoyong, K.; Yunseok, K. & Kyung-Hee, J. (1993). Artificial Neural Network Based Feeder Reconfiguration for Loss Reduction in Distribution Systems. IEEE Trans. On Power Delivery, Vol. 8, No. 3, 1993, pp. 1356-1366
  179. Klopčič, B.; Dolinar, D. & Štumberger, G. (2008). Advanced Control of a Resistance Spot Welding System. IEEE Trans. On Power Electronics, Vol. 23, No. 1, January 2008, pp. 144-152
  180. Leon, F. & Semlyen, A. (1994). Complete Transformer Model for Electromagnetic Transients. IEEE Trans. On Power Delivery, Vol. 9, No. 1, January 1994, pp. 231-239
  181. Pihler, J.; Grčar, B. & Dolinar, D. (1997). Improved Operation of Power Transformer Protection Using Artificial Neural Network. IEEE Trans. On Power Delivery, Vol. 12, No. 3, 1997, pp. 1128-1136
  182. Ramboz, D. J. (1996). Machinable Rogowski Coil, Design, and Calibration. IEEE Trans. Instrumentation and Measurement, Vol. 45, No. 2, April 1996
  183. Sabate, J. A.; Vlatkovic, V.; Ridley, R. B.; Lee, F. C. & Cho, B. H. (1990). Design Considerations for High-voltage High-power Full Bridge Zero Voltage-switching PWM Converter. IEEE Appl. Power Electron., Conference, 1990, pp. 275-284
  184. Štumberger, G.; Klopčič, B.; Deželak, K. & Dolinar, D. (2010). Prevention of Iron Core Saturation in Multi-Winding Transformer for DC-DC Converters. IEEE Trans. On Magnetics, Vol. 46, No. 2, February 2010, pp. 582-585 Paper 1.2, 8-9 th August 2002 Nagpur , organized by Laxminarayan Institute of Technology, Nagpur, India
  185. Beluhan Damir, & Beluhan Sunica (2000). Hybrid modeling approach to on-line estimation of yeast biomass concentration in industrial bioreactor, Biotechnology Letters 22(8), pp. 631-635
  186. Bhattacharya Suvendu, Patel Bhavesh K, & Agarwal Kalpesh (2003). Enrobing of foods: Simulation study and application of artificial neural network for development of products. Proceedings of International Food Convention "Innovative Food Technologies and Quality Systems Strategies for Global Competitiveness" IFCON 2003, Poster no TC- 32, pp 172, Mysore, December 2003.(AFSTI), Mysore India Carapiso Ana I, Ventanas Jesus, Jurado Angela, & Garcia Carmen (2001). An Electronic Nose to Classify Isberian Pig Fats with different Fatty Acid Composition, Journal of the American Oil Chemists' Society, 78(4), pp. 415-418
  187. Deshpande SK, Bhotmange MG, Chakrabarti T, & Shastri PN (2008). Production of cellulase and xylanase by T. reesei (QM9414 mutant), A. niger and mixed culture by Solid State Fermentation (SSF) of Water Hyacinth (Eicchornia crassipes), Indian Journal of Chemical Technology, 15(5), pp. 449-456
  188. Eberhart, R. C., & Dobbins, R.W. (1990). Network analysis. In Neural Network PC Tools. A. Practical Guide, R.C. Eberhart and R.W. Dobbins (Ed.), Academic Press, San Diego, CA. Gardner, JW, Hines, EL, & Wilkinson M (1990). Application of artificial neural networks to an electronic olfactory system, Journal Measurement Science and Technology, 1(5), pp. 446.
  189. Gupta R, Pandharipande SL, & Shastri PN (2005). Optimization of the process of extraction of fiber from defatted soyflour using ANN, National Seminar on Global perspectives for India Food Industry by 2020-Food Vision 2020, organized by Laxminarayan Institute of Technology, Nagpur University, Nagpur.
  190. Harimoto Y, Durance T, Nakai S, & Lukow O.M. (1995). Neural Networks Vs Principal Component Regression for Prediction of Wheat Flour Loaf Volume in Baking Tests, Journal of Food Science, 60(3), pp. 429-433
  191. Herv's, C. G.,Zurera, Garcfa, R M., & Martinez J. A. (2001). Optimization of Computational Neural Network for Its Application in the Prediction of Microbial Growth in Foods Food Science and Technology International, 7: 159-163
  192. Hong Yan, G.V., & Barbosa-Canovas (2001). Attrition Evaluation for selected Agglomerated Food Powders: The effect of agglomerate size and water activity, Journal of Food Process Engineering, 24(1), pp. 37-49
  193. Hornik, K, Stichcombe, M, & White , H (1989). Multilayer Feed forward Neural Network are universal Approximate . Neural Network. 2, pp. 359-366 Huang Y, Kangas LJ, & Rasco BA. (2007). Applications of artificial neural networks (ANNs) in food science. Crit. Rev Food Sci. Nutr. 47(2), pp. 113-26
  194. Huiling Tai, Guangzhong Xie, & Yadong Jiang (2004). An Artificial Olfactory system based on Gas Sensor Array and Back-Propogation Neural Network, Lecture Notes in Computer Science, Advances in Neural Networks, Vol. 3174, pp. 323-339
  195. Igor V. Kovalenko, Glen R. Rippke, & Charles R. Hurburgh (2006). Measurement of soybean fatty acids by near-infrared spectroscopy: Linear and nonlinear calibration methods Journal of the American Oil Chemists' Society, 83(5)
  196. İsmail Hakkı Boyacı, Gulum Sumnu, & Ozge Sakiyan (2008). Estimation of Dielectric Properties of Cakes Based on Porosity, Moisture Content, and Formulations Using Statistical Methods and Artificial Neural Networks, Food Bioprocess Technol 2(4), pp. 353-360
  197. Jenzsch, Marco, Simutis, Rimvydas, Eisbrenner, Günter, Stückrath, Ingolf, & Lübbert, Andreas (2006). Estimation of biomass concentrations in fermentation processes for recombinant protein production, Bioprocess and Biosystems Engineering, 29(1), pp. 19-27
  198. Jose Alberto Gallegos-Enfante, Nuria E.Roha Guzman, Ruben F.Gonzalez-Laredo, & Ramiro Rico-Martinez (2007). The kinetics of crystallization of tripalmitin in olive oil: an artificial neural network approach Journal of Food Lipids, 9(1), pp. 73-86
  199. Kılıç, K., Boyacı, İ.-H., Köksel, H., & Küsmenoğlu, İ. (2007). A classification system for beans using computer vision system and artificial neural networks. Journal of Food Engineering, 78, pp. 897-904.
  200. References and further reading may be available for this article. To view references and further reading you must this article.
  201. Kulkarni Savita G., Chaudhary Amit Kumar Nandi , Somnath Tambe, & Kulkarni Bhaskar D. (2004). Modeling and monitoring of batch processes using principal component analysis (PCA) assisted generalized regression neural networks (GRNN), Biochemical Engineering Journal, 18(3), pp. 193-210
  202. Lenz, J, Hofer, M, Krasenbrink, J, B, & Holker U (2004). A Survey of Computational and physical methods applied to solid state fermentation, Applied Microbiology and biotechnology, 65(1), pp. 9-17
  203. Lopes, M.F.S., Pereira C. I., Rodrigues F.M.S., Martins M. P., Mimoso M.C., Barros T. C., Figueiredo Marques J. J., Tenreiro R. P., Almeida J. S., & Barreto Crespo M. T. (1999). Registered designation of origin areas of fermented food products defined by microbial phenotypes and artificial neural networks. Appl. Environ. Microbiol., 65, pp. 4484-4489
  204. Lou, W., & Nakai, S. (2001). Application of artificial neural networks for predicting the thermal inactivation of bacteria: A combined effect of temperature, pH and water activity. Food Research International, 34, pp. 573-579
  205. Mazzuti Marcio M, Corrazza Marcos L, Filho Francisco Maugeri, Rodrigues Marai Isabel, Corraza Fernanda C, & Triechel Helen (2009). Inulinase production in a batch bioreactor using agroindustrial residues as the substrate: experimental data and modeling, Bioprocess and Biosystems engineering, 32(1), pp. 85-95
  206. Meshram C.N. (2008). Studies on dehydration of agro based products using radio frequency dryer, M.Tech (ChemTech.) Thesis sumitted to Nagpur University Mittal G.S., & Zhang , J. (2000). Prediction of temperature and moisture content of frankfurters during thermal processing using neural network, Meat Science, 55(1), pp. 13-24
  207. Molkentin Joachim, Meisel Hans, Lehmann Ines, & Rehbein Hartmut (2007). Identification of Organically Farmed Atlantic Salmon by Analysis of Stable Isotopes and Fatty acids, European food Research and Technology, 224 (5) pp. 535-543
  208. Pandharipande, M.S., Pandharipande, S.L., Bhotmange, M.G., & Shastri P.N. (2003). Application of ANN for prediction of Amylase production by Aspergillus oryzae under SSF conditions; Proceedings of International Food Convention"Innovative Food by A. niger in solid state fermentation. Asian Journal of Microbiology Biotechnology Environmental Science, 11(4), pp. 777-782
  209. Sousa Ruy, Resende Mariaam M, Giordano Raquel L.C., & Giordano Roberto C, (2003). Hydrolysis of cheese whey proteins by alcalase immobilized in agarose gel particles, Applied Biochemistry and Biotechnology, 106(1-3)
  210. Vallejo-Cordoba B., Arteaga G.E., & Nakai S. (1995). Predicting Milk Shelf-life Based on Artificial Neural Networks and Headspace Gas Chromatographic Data, Journal of Food Science, 60(5), pp. 885-888
  211. Vassileva S., B. Tzvetkova B., Katranoushkova C. and Losseva L.(2000) Neuro-fuzzy prediction of uricase production Bioprocess and Biosystems Engineering 22,( 4), pp 363-367
  212. Wongsapat Chokananporn, & Ampawan Tansakul (2008). Artificial Neural Network Model for Estimating the Surface Area of Fresh Guava, Asian Journal of Food and Agro- Industry, 1(3), pp. 129 -136
  213. Yadav Sangeeta, Shastri N.V., Pandharipande S.L., & Shastri P. N. (2003). Optimization of water and DOP level for production of pectin trans eliminase by Penicillium oxalatum under SSF condition by Artificial Neural Network, Proceedings of International Food Convention"Innovative Food Technologies and Quality Systems Strategies for Global Competitiveness" IFCON 2003, Poster no FB 28, pp. 48, Mysore , December 2003.(AFSTI) Mysore, India
  214. Yasuo Saito, Toshiharu Hatanaka, Katsuji Uosaki, & Hidekazu Shigeto (2003). Neural Network application to Eggplant Classification, Lecture Notes in Computer Science, Vol. 2774, pp. 933-940
  215. Yeh Jeffrey C.H., Hamey Leonard G. C., Westcott Tas, & Sung Samuel K.Y. (2005). In Proceedings of the IEEE International Conference on Neural Networks 2005, pp. 37--42, {IEEE}
  216. Zhang, Jun, & Chen, Yixin (1997). Food sensory evaluation employing artificial neural networks Sensor Review, 17(2), pp. 150-158(9)
  217. References
  218. Argyri, A. A., Panagou, E. Z., Tarantilis, P. A., Polysiou, M. & Nychas, G. J. E. (2010). Rapid qualitative and quantitative detection of beef fillets spoilage based on Fourier transform infrared spectroscopy data and artificial neural networks. Sensors and Actuators B-Chemical, 145, 1, 146-154, ISSN: 0925-4005
  219. Balasubramanian, S., Panigrahi, S., Logue, C. M., Gu, H. & Marchello, M. (2009). Neural networks-integrated metal oxide-based artificial olfactory system for meat spoilage identification. Journal of Food Engineering, 91, 1, 91-98, ISSN: 0260-8774
  220. Beattie, J. R., Bell, S. E. J., Borggaard, C., Fearon, A. M. & Moss, B. W. (2007). Classification of adipose tissue species using Raman spectroscopy. Lipids, 42, 7, 679-685, ISSN: 0024- 4201
  221. Berg, E. P., Engel, B. A. & Forrest, J. C. (1998). Pork carcass composition derived from a neural network model of electromagnetic scans. Journal of Animal Science, 76, 1, 18-22, ISSN: 0021-8812
  222. Borggaard, C., Madsen, N. & Thodberg, H. (1996). In-line image analysis in the slaughter industry, illustrated by beef carcass classification. Meat Science, 43, 151-163, ISSN: 0309-1740
  223. Brethour, J. (1994). Estimating marbling score in live cattle from ultrasoud images using pattern-recognition and neural-network procedures. Journal of Animal Science, 72, 6, 1425-1432, ISSN: 0021-8812
  224. Broomhead, D. S. & Lowe, D. (1998). Multivariable functional interpolation and adaptive networks. Complex Systems, 2, 312-355, ISSN: 0891-2513
  225. Cartwright, H. M. (2008). Artificial neural networks in biology and chemistry. In: Artificial neural networks : methods and applications. Livingstone, D. (Ed.), 1-13, Humana Press, ISBN: 978-1-58829-718-1, New York
  226. Chandraratne, M. R., Samarasinghe, S., Kulasiri, D. & Bickerstaffe, R. (2006). Prediction of lamb tenderness using image surface texture features. Journal of Food Engineering, 77, 3, 492-499, ISSN: 0260-8774
  227. Chandraratne, M., Kulasiri, D. & Samarasinghe, S. (2007). Classification of lamb carcass using machine vision: Comparison of statistical and neural network analyses. Journal of Food Engineering, 82, 1, 26-34, ISSN: 0260-8774
  228. Chao, K., Park, B., Chen, Y. R., Hruschka, W. R. & Wheaten, F. W. (2000). Design of a dual-camera system for poultry carcasses inspection. Applied Engineering in Agriculture, 16, 5, 581-587, ISSN: 0883-8542
  229. Chao, K., Chen, Y. R., Hruschka, W. R. & Gwozdz, F. B. (2002). On-line inspection of poultry carcasses by a dual-camera system. Journal of Food Engineering, 51, 3, 185-192, ISSN: 0260-8774
  230. Chen, Y. R., Huffman, R. W., Park, B. & Nguyen, M. (1996). Transportable spectrophotometer system for on-line classification of poultry carcasses. Applied Spectroscopy, 50, 7, 910-916, ISSN: 0003-7028
  231. Chen, Y. R., Nguyen, M. & Park, B. (1998a). Neural network with principal component analysis for poultry carcass classification. Journal of Food Process Engineering, 21, 5, 351-367, ISSN: 0145-8876
  232. Chen, Y. R., Park, B., Huffman, R. W. & Nguyen, M. (1998b). Classification o in-line poultry carcasses with back-propagation neural networks. Journal of Food Processing Engineering, 21, 1, 33-48, ISSN: 1745-4530
  233. Cheroutre-Vialette, M. & Lebert, A. (2002). Application of recurrent neural network to predict bacterial growth in dynamic conditions. International Journal of Food Microbiology, 73, 2-3, 107-118 ISSN: 0168-1605
  234. Christensen, S. S., Andersen, A. W., Jørgensen, T. M. & Liisberg, C. (1996). Visual guidance of a pig evisceration robot using neural networks. Pattern Recognition Letters, 17, 4, 345-355, ISSN: 0167-8655
  235. Craven, M. A., Gardner, J. W. & Bartlett, P. N. (1996). Electronic noses -Development and future prospects. Trends in Analytical Chemistry, 15, 9, 486-493, ISSN: 0167-2940
  236. Del Moral, F. G., Guillén, A., del Moral, L. G., O'Valle, F., Martínez, L. & del Moral, R. G. (2009). Duroc and Iberian pork neural network classification by visible and near infrared reflectance spectroscopy. Journal of Food Engineering, 90, 4, 540-547, ISSN: 0260-8774
  237. Díez, J., Bahamonde, A., Alonso, J., López, S., del Coz, J. J., Quevedo, J. R., Ranilla, J., Luaces, O., Alvarez, I., Royo, L. J. & Goyache, F. (2003). Artificial intelligence techniques point out differences in classification performance between light and standard bovine carcasses. Meat Science, 64, 3, 249-258, ISSN: 0309-1740
  238. Dong, Q. L. (2009). BP neural network for evaluating sensory texture properties of cooked sausage. Journal of Sensory Studies, 24, 6, 833-850, ISSN: 0887-8250
  239. Eklöv, T., Johansson, G., Winquist, F. & Lundström, I. (1998). Monitoring sausage fermentation using an electronic nose. Journal of the Science of Food and Agriculture, 76, 4, 525-532, ISSN: 0022-5142
  240. Ellis, D. I. & Goodacre, R. (2001). Rapid and quantitative detection of the microbial spoilage of muscle foods: Current status and future trends. Trends in Food Science & Technology, 12, 11, 414-424, ISSN: 0924-2244
  241. Galdikas, A., Mironas, A., Senuliené, D., Strazdiené, V., Šetkus, A. & Zelenin, D. (2000). Response time based output of metal oxide gas sensors applied to evaluation of meat freshness with neural signal analysis. Sensors and Actuators B: Chemical, 69, 3, 258-265, ISSN: 0925-4005
  242. Harper, W. J. (2001). The strengths and weaknesses of the electronic nose. In: Headspace analysis of foods and flavours, Rouseff R. L. & Cadwallader K. R. , (Ed.), 59-71, Kluwer Academic/Plenum Publ., ISBN: 978-0-306-46561-1, New York
  243. Hatem, I., Tan, J. & Gerrard, D. E. (2003). Determination of animal skeletal maturity by image processing. Meat Science, 65, 3, 999-1004, ISSN: 0309-1740
  244. Hill, B. D., Jones, S. D. M., Robertson, W. M. & Major, I. T. (2000). Neural network modeling of carcass measurements to predict beef tenderness. Canadian Journal of Animal Science, 80, 2, 311-318, ISSN: 0008-3984
  245. Huang, Y., Lacey, R. & Whittaker, A. (1998). Neural network prediction modeling based on elastographic textural features for meat quality evaluation. Transactions of the ASAE, 41, 4, 1173-1179, ISSN: 0001-2351
  246. Hwang, H., Park, B., Nguyen, M. & Chen, Y. R. (1997). Hybrid image processing for robust extraction of lean tissue on beef cut surfaces. Computers and Electronics in Agriculture, 17, 3, 281-294, ISSN: 0168-1699
  247. Ibarra, J. G., Tao, Y. & Xin, H. W. (2000). Combined IR imaging-neural network method for the estimation of internal temperature in cooked chicken meat. Optical Engineering, 39, 11, 3032-3038, ISSN: 0091-3286
  248. Ibarra, J. G., Tao, Y., Newberry, L. & Chen, Y. R. (2002). Learning vector quantization for color classification of diseased air sacs in chicken carcasses. Transactions of the ASAE, 45, 5, 1629-1635, ISSN: 0001-2351
  249. Josell, Å., Martinsson, L., Borggaard, C., Andersen, J. R. & Tornberg, E. (2000). Determination of RN-phenotype in pigs at slaughter-line using visual and near- infrared spectroscopy. Meat Science, 55, 3, 273-278, ISSN: 0309-1740
  250. Li, J., Tan, J., Martz, F. A. & Heymann, H. (1999). Image texture features as indicators of beef tenderness. Meat Science, 53, 1, 17-22, ISSN: 0309-1740
  251. Li, J., Tan, J. & Shatadal, P. (2001). Classification of tough and tender beef by image texture analysis. Meat Science, 57, 4, 341-346, ISSN: 0309-1740
  252. Lohninger, H. (1993). Evaluation of neural networks based on radial basis functions and their application to the prediction of boiling points from structural parameters. Journal of Chemical Information and Computer Sciences, 33, 736-744, ISSN: 0095-2338
  253. Lohninger, H. (1999). Teach/Me Data Analysis, Springer-Verlag, Berlin-New York-Tokyo, ISBN: 978-3-54014-743-5
  254. Lou, W. & Naka, S. (2001). Artificial Neural Network-based predictive model for bacterial growth in a simulated medium o modified-atmosphere-packed coked meat products. Journal of Agricultural and Food Chemistry, 49, 4, 1799-1804, ISSN: 0021-8561
  255. Lu, J., Tan, J., Shatadal, P. & Gerrard, D. E. (2000). Evaluation of pork color by using computer vision. Meat Science, 56, 1, 57-60, ISSN: 0309-1740
  256. Lu, W. & Tan, J. (2004). Analysis of image-based measurements and USDA characteristics as predictors of beef lean yield. Meat Science, 66, 2, 483-491, ISSN: 0309-1740
  257. Ma, L. & Tao, Y. (2005). An infrared and laser range imaging system for non-invasive estimation of internal temperatures in chicken breasts during cooking. Transactions of the ASAE, 48, 2, 681-690, ISSN: 0001-2351
  258. Mittal, G. S. & Zhang, J. (2000). Prediction of temperature and moisture content of frankfurters during thermal processing using neural network. Meat Science, 55, 1, 13-24, ISSN: 0309-1740
  259. Novič, M. (2008). Kohonen and counter-propagation neural networks applied for mapping and interpretation of IR spectra. In: Artificial neural networks : methods and applications. Livingstone, D. (Ed.), 45-60, Humana Press, ISBN: 978-1-58829-718-1, New York Palanichamy, A., Jayas, D. S. & Holley, R. A. (2008). Predicting survival of Escherichia coli O157 : H7 in dry fermented sausage using artificial neural networks. Journal of Food Protection, 71, 1, 6-12, ISSN: 0362-028X
  260. Panigrahi, S., Balasubramanian, S., Gu, H., Logue, C. M. & Marchello, M. (2006). Design and development of a metal oxide based electronic nose for spoilage classification of beef. Sensors and Actuators B: Chemical, 119, 1, 2-14, ISSN: 0925-4005
  261. Park, B. & Chen, Y.-R. (1994). Intensified multispectral imaging system for poultry carcass inspection. Transactions of the ASAE, 37, 6, 1983-1988, ISSN: 0001-2351
  262. Park, B. Chen, Y. R., Nguyen, M. & Hwang, H. (1996). Characterizing multispectral images of tumorous, bruised, skin-torn, and wholesome poultry carcasses. Transactions of the ASAE, 39, 5, 1933-1941, ISSN: 0001-2351
  263. Park, B., Chen, Y. R. & Nguyen, M. (1998). Multi-spectral Image Analysis using Neural Network Algorithm for Inspection of Poultry Carcasses. Journal of Agricultural Engineering Research, 69, 4, 351-363, ISSN: 1095-9246
  264. Park, B. & Chen, J. Y. (2000). Real-time dual-wavelength image processing for poultry safety inspection. Journal of Food Processing Engineering, 23., 5., 329-351, ISSN: 1745-4530
  265. Peres, A. M., Dias, L. G., Joy, M. & Teixeira, A. (2010). Assessment of goat fat depots using ultrasound technology and multiple multivariate prediction models. Journal of Animal Science, 88, 2, 572-580, ISSN: 0021-8812
  266. Prevolnik, M., Čandek-Potokar, M., Novič, M. & Škorjanc, D. (2009). An attempt to predict pork drip loss from pH and colour measurements or near infrared spectra using artificial neural networks. Meat Science, 83, 3, 405-411, ISSN: 0309-1740
  267. Qiao, J., Ngadi, M. O., Wang, N., Gariépy, C. & Prasher, S. O. (2007a). Pork quality and marbling level assessment using a hyperspectral imaging system. Journal of Food Engineering, 83, 1, 10-16, ISSN: 0260-8774
  268. Qiao, J., Wang, N., Ngadi, M. O., Gunenc, A., Monroy, M., Gariépy, C. & Prasher, S.O. (2007b). Prediction of drip-loss, pH, and color for pork using a hyperspectral imaging technique. Meat Science, 76, 1, 1-8, ISSN: 0309-1740
  269. Rosenblatt, F. (1961). Principles of neurodynamics: perceptrons and the theory of brain mechanisms. Spartan Books, Washington D. C., Washington
  270. Santé, V. S., Lebert, A., Le Pottier, G. & Ouali, A. (1996). Comparison between two statistical models for prediction of turkey breast meat colour. Meat Science, 43, 3-4, 283-290, ISSN: 0309-1740
  271. Santos, J. P., García, M., Aleixandre, M., Horrillo, M. C., Gutiérrez, J., Sayago, I., Fernández, M. J. & Arés, L. (2004). Electronic nose for the identification of pig feeding and ripening time in Iberian hams. Meat Science, 66, 3, 727-732, ISSN: 0309-1740
  272. Sebastián, A., Viallon-Femandez, C., Toumayre, P., Berge, P., Sañudo, C., Sánchez, A. & Berdague, J.-L. (2004). Evaluation of collagen and lipid contents and texture of meat by Curie point pyrolysis-mass spectrometry. Journal of Analytical and Applied Pyrolysis, 72, 2, 203-208, ISSN: 0165-2370
  273. Sheridan, C., O'Farrell, M., Lewis, E., Flanagan, C., Kerry, J. & Jackman, N. (2007). A comparison of CIE L*a*b* and spectral methods for the analysis of fading in sliced cured ham. Journal of Optics A-Pure and Applied Optics, 9, 6, 32-39, ISSN: 1464-4258
  274. Shiranita, K., Hayashi, K., Otsubo, A., Miyajima, T. & Takiyama, R. (2000). Grading meat quality by image processing. Pattern Recognition, 33, 1, 97-104, ISSN: 0031-3203.
  275. Tan, F. J., Morgan, M. T., Ludas, L. I., Forrest, J. C. & Gerrard, D. E. (2000). Assessment of fresh pork color with color machine vision. Journal of Animal Science, 78, 12, 3078-3085, ISSN: 0021-8812
  276. Tian, Y. Q., McCall, D. G., Dripps, W., Yu, Q. & Gong, P. (2005). Using computer vision technology to evaluate the meat tenderness of grazing beef. Food Australia, 57, 8, 322-326, ISSN: 1032-5298
  277. Valous, N. A., Mendoza, F., Sun, D.-W. & Allen, P. (2010). Supervised neural network classification of pre-sliced cooked pork ham images using quaternionic singular values. Meat Science, 84, 3, 422-430, ISSN: 0309-1740
  278. Wang, Y., Yang, W., Winter, P. & Walker, L. (2008). Walk-through weighing of pigs using machine vision and an artificial neural network. Biosystems Engineering, 100, 1, 117-125, ISSN: 1537-5110
  279. Winquist, F., Hörnsten, E. G., Sundgren, H. & Lundström, I. (1993). Performance of an electronic nose for quality estimation of ground meat. Measurement Science & Technology, 4, 12, 1493-1500, ISSN: 0957-0233
  280. Zheng, C., Sun, D.-W. & Zheng, L. (2007). Predicting shrinkage of ellipsoid beef joints as affected by water immersion cooking using image analysis and neural network. Journal of Food Engineering, 79, 4, 1243-1249, ISSN: 0260-8774
  281. Zou, J., Han, Y. & So, S.-S. (2008). Overview of artificial neural networks. In: Artificial neural networks : methods and applications. Livingstone, D. (Ed.), 15-23, Humana Press, ISBN: 978-1-58829-718-1, New York.
  282. Zupan, J. (1994). Introduction to artificial neural network (ANN) methods: What they are and how to use them. Acta Chimica Slovenica, 41, 3, 327-352, ISSN: 1318-0207
  283. Zurera-Cosano, G., Garcia-Gimeno, R. M, Rodriguez-Perez, M. R. & Hervas-Martinez, C. (2005). Validating an artificial neural network model of Leuconostoc mesenteroides in vacuum packaged sliced cooked meat products for shelf-life estimation. European Food Research and Technology, 221, 5, 717-724, ISSN: 1438-2377
  284. References
  285. Li Hongjian;Lin Yuchun. (2007). Vigorously the development and promotion of our natural gas vehicles. MAGNIFICENT WRTING, No.4, (2007) page numbers (174), ISSN l009-5489
  286. MA Youliang; CHEN Quanshi; QI Zhanning. (2001). Research on the SOC definition and measurement method of batteries used in EVs. Journal of Tsinghua University(Science and Technology), Vol.41, No.11, (2001) page numbers (95-98), ISSN 1000-0054
  287. Piao Changhao, Yang Xiaoyong, Teng Cong and Yang Huiqian(2010), An Improved Model Based on Artificial Neural Networks and Thevenin Model for Nickel Metal Hydride Power Battery, 2010 International Conference on Optics, Photonics and Energy Engineering, March 2010, Wuhan, China , pp.
  288. T.Shinpo. Development of Battery Management System for Electric Vehicle.Proc.of the 14 International Electric Vehicle Sysposium(1997)
  289. Lin Chengtao; CHEN Quanshi; WANG Junping. (2006). Improved Ah counting method for state of charge estimation of electric vehicle batteries. Journal of Tsinghua University(Science and Technology), Vol.26, No.2, (2006) page numbers (76-79), ISSN 1000-0054
  290. Zhao Huiyong; Luo Yongge; Yang Qiliang; She Jianqiang. (2004). Situation and Development on the Vehicle NiMHBattery Management System. Journal of Hubei Automotive Industries Institute, Vol.18, No.3, (SEP2004) page numbers (23-26), ISSN 1008-5483
  291. Jiang Jiuchun,Niu Liyong,Zhang Xin. (2004). Research 0n Battery Management System for Hybrid Electric Vehicle. High Technology Letters, Vol.11, No.2, (2004) page numbers (75-77), ISSN 1002-0470
  292. Chen Jun;Tao Zhanliang. (2006). Nickel-Metal Hydride Secondary Battery, Chemical Industry Press, ISBN 9787502583859,Bei Jing
  293. PILLER S, PERRIN M, JOSSEN A. Methods for state of charge determination and their application[J]. Journal of Power Sources, 2001,96(5):113-120.
  294. Zhang Hongmei, DENG Zhenglong. UKF-based attitude determination method for gyro less satellite[J]. Journal of System Engineering and Electronics, 2004, 15(2): 105-109.
  295. Tian Xiaohui;Diao Hainan;Fan Bo;Qiu Yunpeng. (2010). Research on estimation of lithium-ion battery SOC for electric vehicle. Chinese Journal of Power Sources, Vol.6, No.1, (2010) page numbers (51-54), ISSN 1002-087X
  296. Meng Siqi; Yang Honggeng. (2008). Short-Term Load Forecasting Based on Second- Order Correction of Kalman Filter. Advances of Power System & Hydroelectric Engineering, Vol.24, No.2, (200802) page numbers (73-75), ISSN 1674-0009
  297. LIN Chengtao, WANG Junping, CHEN Quanshi, Methods for state of charge estimation of EV batteries and their application[J], 2004, 34(5):772-774.
  298. SIMMONDS N, Device for indicating the residual capacity of secondary cells: U.S. Patent 5 518 835[P], 1996-5-21.
  299. SALAMEH M, CASACCA A. A mathematical model for lead2acid batteries [J]. IEEE Trans Energy Conversion, 1992 ,7 (1): 93 -97.
  300. Shen Wenxue, State of available capacity estimation for lead-acid batteries in electric vehicles using neural network[J], Energy Conversion and Management, 2007, 48(2):433-442.
  301. A. Salkind, C. Fennie, P. Singh, T. Atwater, D. Reisner, Determination of state-of-charge and state-of-health of batteries by fuzzy logic methodology[J], Journal of Power Sources , 1999, 80(2): 293-300.
  302. Simon Haykin. (2001). Neural network: A comprehensive foundation (Second edition), Tsinghua University Press, ISBN 730204936, Bei Jing
  303. Chang-hao Piao, Wen-li Fu, Gai-hui Lei and Chong-du Cho, Online Parameter Estimation of the Ni-MH Batteries Based on Statistical Methods, Energies, Volume 3, Issue 2 (February 2010), pp.206-215
  304. Martin T.Hagan. (2002). Neural network design, Machinery Industry Press, ISBN 7111075854., Bei Jing
  305. Jiao Huimin; Yu Qunming. Research on Capacity Predication of Battery based on BP network and Genetic Algorithm. Computer Simulation, Vol.26, No.11, (2006) page numbers (218-220), ISSN 1006-9348
  306. Wen Xin; Zhou Lu. (2000). MATLAB Neural network application and design, Science and Technology Press, ISBN 7030084802, Bei Jing
  307. Gao Juan. (2003). Artificial neural network theory and simulation, Machinery Industry Press, ISBN 9787111125914, Bei Jing
  308. Lin C, Reinforcement structure/parameter learning for neural network based fuzzy logic control systems [J], IEEE Trans. Fuzzy Syst, 1994, 2(1): 46-63
  309. References J.K. Wu, Frequency tracking techniques of power systems including higher order harmonics devices, Proceedings of the Fifth IEEE International Caracas Conference, vol. 1, (3-5 Nov. 2004), pp. 298-303.
  310. M. Akke, Frequency estimation by demodulation of two complex signals, IEEE Trans. Power Del., vol. 12, no. 1, (Jan. 1997), pp. 157-163.
  311. P.J. Moore, R.D. Carranza and A.T. Johns, Model system tests on a new numeric method of power system frequency measurement, IEEE Trans. Power Del., vol. 11, no. 2, (Apr. 1996), pp. 696-701.
  312. M.M. Begovic, P.M. Djuric, S. Dunlap and A.G. Phadke, Frequency tracking in power networks in the presence of harmonics, IEEE Trans. Power Del., vol. 8, no. 2, (April 1993), pp. 480-486.
  313. C.T. Nguyen and K.A. Srinivasan, A new technique for rapid tracking of frequency deviations based on level crossings, IEEE Trans. Power App. Syst., vol. 103, no. 8, (April 1984), pp. 2230-2236.
  314. I. Kamwa and R. Grondin, Fast adaptive schemes for tracking voltage phasor and local frequency in power transmission and distribution systems, IEEE Trans. Power Del., vol. 7, no. 2, (April 1992), pp.789-795.
  315. M.S. Sachdev and M.M. Giray, A least error square technique for determining power system frequency, IEEE Trans. Power App. Syst., vol. 104, no. 2, (Feb. 1985), pp. 437-443.
  316. M.M. Giray and M.S. Sachdev, Off-nominal frequency measurements in electric power systems, IEEE Trans. Power Del., vol. 4, no. 3, (July 1989), pp. 1573-1578.
  317. V.V. Terzija, M.B. Djuric and B.D. Kovacevic, Voltage phasor and local system frequency estimation using Newton-type algorithm, IEEE Trans. Power Del., vol. 9, no. 3, (Jul. 1994), pp. 1368-1374.
  318. M.S. Sachdev, H. C. Wood and N. G. Johnson, Kalman filtering applied to power system measurements for relaying, IEEE Trans. Power App. Syst., vol. 104, no. 12, (Dec. 1985), pp. 3565-3573.
  319. A.A. Girgis and T.L.D. Hwang, Optimal estimation of voltage phasors and frequency deviation using linear and nonlinear Kalman filter: Theory and limitations, IEEE Tran. Power App. Syst., vol. 103, no. 10, (1984), pp. 2943-2949.
  320. A.A. Girgis and W.L. Peterson, Adaptive estimation of power system frequency deviation and its rate of change for calculating sudden power system overloads, IEEE Trans. Power Del., vol. 5, no. 2, (Apr. 1990), pp. 585-594.
  321. T. Lobos and J. Rezmer, Real time determination of power system frequency, IEEE Trans. Instrum. Meas., vol. 46, no. 4, (Aug. 1997), pp. 877-881.
  322. A.G. Phadke, J.S. Thorp and M.G. Adamiak, A new measurement technique for tracking voltage phasors, local system frequency, and rate of change of frequency, IEEE Trans. Power App. and Systems, vol. 102, no. 5, (May 1983), pp. 1025-1038.
  323. J.Z. Yang and C.W. Liu, A precise calculation of power system frequency, IEEE Trans. Power Del., vol. 16, no. 3, (July 2001), pp. 361-366.
  324. J.Z. Yang and C.W. Liu, A precise calculation of power system frequency and phasor, IEEE Trans. Power Del., vol. 15, no. 2, (Apr. 2000), pp. 494-499.
  325. S.L. Lu, C.E. Lin and C.L. Huang, Power frequency harmonic measurement using integer periodic extension method, Elect. Power Syst. Res., vol. 44, no. 2, (1998), pp. 107- 115.
  326. P.J. Moore, R.D. Carranza and A.T. Johns, A new numeric technique for high speed evaluation of power system frequency, IEE Gen. Trans. Dist. Proc., vol. 141, no. 5 (Sept. 1994), pp. 529-536.
  327. J. Szafran and W. Rebizant, Power system frequency estimation, IEE Gen. Trans. Dist. Proc., vol. 145, no. 5, (Sep. 1998), pp. 578-582.
  328. A.A. Girgis and F.M. Ham, A new FFT-based digital frequency relay for load shedding, IEEE Trans. Power App. Syst., vol. 101, no. 2, (Feb. 1982), pp. 433-439.
  329. H.C. Lin and C. S. Lee, Enhanced FFT-based parameter algorithm for simultaneous multiple harmonics analysis, IEE Gen. Trans. Dist. Proc., vol. 148, no. 3, (May 2001), pp. 209- 214.
  330. W.T. Kuang and A.S. Morris, Using short-time Fourier transform and wavelet packet filter banks for improved frequency measurement in a Doppler robot tracking system, IEEE Trans. Instrum. Meas., vol. 51, no. 3, (June 2002), pp. 440-444.
  331. V.L. Pham and K. P. Wong, Wavelet-transform-based algorithm for harmonic analysis of power system waveforms, IEE Gen. Trans. Dist. Proc., vol. 146, no. 3, (May 1999), pp. 249-254.
  332. V.L. Pham and K.P. Wong, Antidistortion method for wavelet transform filter banks and nonstationary power system waveform harmonic analysis, IEE Gen. Trans. Dist. Proc., vol. 148, no. 2, (March 2001), pp. 117-122.
  333. M. Wang and Y. Sun, A practical, precise method for frequency tracking and phasor estimation, IEEE Trans. Power Del., vol. 19, no. 4, (Oct. 2004), pp. 1547-1552.
  334. D.W.P. Thomas and M.S. Woolfson, Evaluation of a novel frequency tracking method, Transmission and Distribution Conference, vol. 1, (11-16 April 1999), pp. 248-253.
  335. M.I. Marei, E.F. El-Saadany and M.M.A. Salama, A processing unit for symmetrical components and harmonics estimation based on a new adaptive linear combiner structure, IEEE Trans. Power Del., vol. 19, no. 3, (July 2004), pp. 1245-1252.
  336. P.J. Moore, J.H. Allmeling and A.T. Johns, Frequency relaying based on instantaneous frequency measurement, IEEE Trans. Power Del., vol. 11, no. 4, (Oct. 1996), pp. 1737-1742.
  337. D.W.P. Thomas and M.S. Woolfson, Evaluation of frequency tracking methods, IEEE Trans. Power Del., vol. 16, no. 3, (July 2001), pp. 367-371.
  338. G. J. Retter, Matrix and Space-Phasor Theory of Electrical Machines, Akademiai Kiado, Budapest, Rumania, (1987).
  339. G.H. Hostetter, Recursive discrete Fourier transformation, IEEE Trans. Speech Audio Process., vol. 28, no, 2, (1980), pp. 184-190.
  340. R.R. Bitmead, A.C. Tsoi and P.J. Parker, A Kalman filtering approach to short-time Fourier analysis, IEEE Trans. Speech Audio Process., vol. 34, no. 6, (1986), pp. 1493-1501
  341. T. Kailath, Linear Systems, Prentice-Hall, New Jersey, (1980). Application of ANN to Real and Reactive Power Allocation Scheme S.N. Khalid, M.W. Mustafa, H. Shareef and A. Khairuddin Universiti Teknologi Malaysia Malaysia
  342. References
  343. Abdullah, S.S (2008). A Short Course in Artificial Neural Network, Desktop, ISBN, Malaysia Bialek, J. ; (1996). Tracing the flow of electricity, IEE Proceedings Generation, Transmission & Distribution, Vol.,143 No., 4 (313-320)
  344. Chu, W.; Chen, B. & Liao, C. (2004). Allocating the Costs of Reactive Power Purchased in an Ancillary Service Market by Modified Y-Bus Matrix Method, IEEE Transaction on Power system, Vol.,19 No., 1 (174-178)
  345. Cheng, J.W.M. (1998). Studies of Bilateral Contracts with Respects to Steady-State Security in a Deregulated Environment, IEEE Transaction on Power system, Vol.,13 No.,3 (1020- 1025)
  346. Haque, R .; & Chowdhury, N. (2005). An Artificial Neural Network Based Transmision Loss Allocation For Bilateral Contracts, Proceedings of the 18th Annual Canadian Conference on Electrical and Computer Engineering, pp.2197-2201, Canada, May 2005
  347. Tsoukalas, LH.; & Uhrig, RE. (1997). Fuzzy and Neural Approaches in Engineering, Wiley, ISBN, New York
  348. Reta, R. ; & Vargas,A . (2001). Electricity Tracing and Loss Allocation Methods Based on Electric Concepts, IEE Proceedings Generation, Transmission & Distribution, Vol.,148 No., 6 (518-522)
  349. Sharkey, A. J. C. (1999), Combining Artificial Neural Nets, ensemble and modular multi net systems, Springer, London
  350. Thompson, G.; Atkinson, C.; Clark, N.; Long, T. and Hanzevack, E. (2000), Neural Network Modelling of the Emissions and Performance of a Heavy-Duty Diesel Engine, Proceedings of the Institute of Mechanical Engineers, Vol. 214, Part D, No. D04499, 2000
  351. Wu, B.; Filipi, Z.; Assanis, D.; Kramer, D. M.; Ohl, G. L.; Prucka, M. J. and Divalentin, E. (2004). Using artificial neural networks for representing the air flow rate through a 2.4 litre VVT engine, SAE paper no. 2004-01-3054
  352. References
  353. Arghavani, J.; Derenne, M. & Marchand, L. (2001). Fuzzy logic application in gasket selection and sealing performance. International Journal of Advanced Manufacturing Technology, Vol. 18, (67-78).
  354. Chau, Kwokwing (2006). A review of the integration of artificial intelligence into coastal modelling. Journal of Environmental Management, Vol. 80, (47-57).
  355. Cus, Franci & Zuperl, Uros (2006). Approach to optimization of cutting conditions by using artificial neural networks. Journal of Materials Processing Technology, Vol. 173, (281-290)
  356. El Baradie, M.A. (1997). A fuzzy logic model for machining data selection. International Journal of Machine Tools and Manufacture, Vol. 37, No. 9, (1353-1372).
  357. Ghiassi, M. & Saidene, H. (2005). A dynamic architecture for artificial neural networks. Neurocomputing, Vol. 63, (397-413).
  358. Hashmi, K.; Graham, I.D. & Mills, B. (2003). Data selection for turning carbon steel using a fuzzy logic approach. Journal of Materials Processing Technology, Vol. 135, (44-58).
  359. Hashmi, K.; Graham, I.D. & Mills, B. (2000). Fuzzy logic based Data selection for the drilling process. Journal of Materials Processing Technology, Vol. 108, (55-61).
  360. Hashmi, K.; El Baradie, M.A. & Ryan, M. (1999). Fuzzy logic based intelligent selection of machining parameters. Journal of Materials Processing Technology, Vol. 94, (94-111).
  361. Hashmi, K.; El Baradie, M.A. & Ryan, M. (1998). Fuzzy logic based intelligent selection of machining parameters. Computers and Industrial Engineering, Vol. 35, No. (3-4), (571-574).
  362. Kim, Jae Kyeong & Park, Kyung Sam (1997). Modelling a class of decision problems using artificial neural networks. Expert Systems with Applications, Vol. 12, (195-208).
  363. Kuo, R.J.; Chi, S.C. & Kao, S.S. (2002). A decision support system for selecting convenience store location through integration of fuzzy AHP and artificial neural network. Computers in Industry, Vol. 47, (199-214).
  364. Lee, B.Y. & Tarng, Y.S. (2000). Cutting parameter selection for maximizing production rate or minimizing production cost in multistage turning operations. Journal of Materials Processing Technology, Vol. 105, (61-66).
  365. Liu, T.I.; Singonahalli, J.H. & Iyer, N.R. (1996). Detection of roller bearing defects using expert system and fuzzy logic. Mechanical Systems and Signal Processing, Vol. 10, No. 5, (595-614).
  366. Malakooti, B. & Deviprasad, J. (1989). An interactive multiple criteria approach for parameter selection in metal cutting. Operations Research, Vol. 37, No. 5, (805-818).
  367. Medsker, Larry R. (1996). Microcomputer applications of hybrid intelligent systems. Journal of Network and Computer applications, Vol. 63, (213-234).
  368. Metcut Research Associates Inc. (1980). Machining Data Handbook, 3 rd edition, Vol. 1 & 2, Cincinnati.
  369. Nian, C.Y.; Yang, W.H. & Tarng, Y.S. (1999). Optimization of turning operations with multiple performance characteristics. Journal of Materials Processing Technology, Vol. 95, (90-96).
  370. Park, Kyung Sam & Kim, Soung Hie (1998). Artificial intelligence approaches to determination of CNC machining parameters in manufacturing: a review. Artificial Intelligence in Engineering, Vol. 12, (127-134).
  371. Saravanan, R.; Asokan, P. & Vijayakumar, K. (2003). Machining parameters optimization for turning cylindrical stock into a continuous finished profile using genetic algorithm (GA) and simulated annealing (SA). International Journal of Advanced Manufacturing Technology, Vol. 21, (1-9).
  372. Singh, Rajiv & Raman, Shivakumar (1992). METEX-an expert system for machining planning. International Journal of Production Research, Vol. 30, No. 7, (1501-1516).
  373. Sivanandam, S.N.; Sumathi, S. & Deepa, S.N. (2007). Introduction to Fuzzy Logic using MATLAB, Springer, Springer-Verlag Berlin Heidelberg.
  374. The MathWorks, Inc. (2009). MATLAB Fuzzy Logic Toolbox, User's guide.
  375. Vitanov, V.I.; Harrison, D.K.; Mincoff, N.H. & Vladimirova, T.V. (1995). An expert system shell for the selection of metal cutting parameters. Journal of Materials Processing Technology, Vol. 15, (111-116).
  376. Wong, S.V. & Hamouda, A.M.S. (2003a). The development of an online knowledge-based expert system for machinability data selection. Knowledge-based Systems, Vol. 16, (215-229).
  377. Wong, S.V. & Hamouda, A.M.S. (2003b). Machinability data representation with artificial neural network. Journal of Materials Processing Technology, Vol. 138, (538-544).
  378. Wong, S.V.; Hamouda, A.M.S. & El Baradie, M.A. (1999). Generalized fuzzy model for metal cutting data selection. Journal of Materials Processing Technology, Vol. 89-90, (310-317).
  379. Yazgan, Harun Resit; Boran, Semra & Goztepe, Kerim (2009). An ERP software selection process with artificial neural network based on analytic network process approach. Expert Systems with Applications, Vol. 36, (9214-9222).
  380. Yilmaz, Oguzhan; Eyercioglu, Omer & Gindy, Nabil N.Z. (2006). A user-friendly fuzzy based system for the selection of electro discharge machining process parameters. Journal of Materials Processing Technology, Vol. 172, (363-371).
  381. Zadeh, L.A. (1965). Fuzzy sets. Information and Control, Vol. (8), (338-353).
  382. Zuperl, Uros & Cus, Franci (2003). Optimization of cutting conditions during cutting by using neural networks. Robotics and Computer Integrated Manufacturing, Vol. 19, (189-199).
  383. References
  384. Baotic, M.; Christophensen, F.; Morari , M. (2006). Constrained Optimal Control of Hybrid Systems With a Linear Performance Index. IEEETrans. on Automatic Control, Vol.51, No 12., ISSN 1903-1919.
  385. Camacho, E.F.; Bordons, C. (2007). Model Predictive Control, Springer-Verlag, ISBN 1-85233- 694-3, London
  386. Coello, C. A. C.; Lamont, G. B. (2002). Evolutionary Algorithms for Solving Multi-Objective problems, Springer, ISBN 978-0-387-33254-3, Boston
  387. Dolezel, P.; Taufer, I. (2009a). PSD controller tuning using artificial intelligence techniques, Proceedings of the 17th International Conference on Process Control '09, pp. 120-124, ISBN 978-80-227-3081-5, Strbske Pleso, june 2009, STU, Bratislava.
  388. Dolezel, P.; Mares, J. (2009b). Reactor Furnace Control using Artificial Neural Networks and Genetic Algoritm, Proceedings of the International Conference on Applied Electronics, pp. 99-102, ISBN 978-80-7043-781-0, Plzen, september 2009, ZCU, Plzen.
  389. Dwarapudi, S.; Gupta, P. K.; Rao, S. M. (2007). Prediction of iron ore pellet strength using artificial neural network model, ISIJ International, Vol. 47, No 1., ISSN 0915-1559.
  390. Economou, C.; Morari, M.; Palsson, B. (1986). Internal Model Control: extension to nonlinear system, Industrial & Engineering Chemistry Process Design and Development, Vol. 26, No 1, pp. 403-411, ISSN 0196-4305.
  391. Fletcher, R. (1987). Practical Methods of Optimization, Wiley, ISBN 978-0-471-91547-8, Chichester, UK.
  392. Lichota, J. ; Grabovski, M. (2010). Application of artificial neural network to boiler and turbine control, Rynek Energii, ISSN 1425-5960.
  393. Mares, J., Dusek, F., Dolezel, P.(2010a) Nelinearni a linearizovany model reaktorové pece. In Proceedings of Conference ARTEP'10", 24.-26. 2 2010.Technicka univerzita Kosice, 2010. Pp. 27-1 -27-14. ISBN 978-80-553-0347-5.
  394. Mares, J., Dusek, F., Dolezel, P.(2010b). Prediktivni rizeni reaktorove pece. In Proceedings of XXXVth Seminary ASR'10 "Instruments and Control", VSB-Technical University Ostrava, 2010. Pp. 269 -279. ISBN 978-80-248-2191-7.
  395. Montague, G.; Morris, J. (1994). Neural network contributions in biotechnology, Trends in biotechnology, Vol. 12, No 8., ISSN 0167-7799.
  396. Nguyen, H.; Prasad, N.; Walker, C. (2003). A First Course in Fuzzy and Neural Control, Chapman & Hall/CRC, ISBN 1-58488-244-1, Boca Raton.
  397. Norgaard, M.; Ravn, O.; Poulsen, N. (2000). A Neural Networks for Modelling and Control of Dynamic Systems, Springer-Verlag, ISBN 978-1-85233-227-3, London.
  398. Rivera, D.; Morari, M.; Skogestad, S. (1986). Internal Model Control: PID Controller Design, Industrial & Engineering Chemistry Process Design and Development, Vol. 25, No 1., pp. 252-265, ISSN 0196-4305.
  399. Teixeira, A.; Alves, C.; Alves, P. M. (2005). Hybrid metabolic flux analysis/artificial neural network modelling of bioprocesses, Proceedings of the 5th International Conference on Hybrid Intelligent Systems, ISBN 0-7695-2457-5, Rio de Janeiro.
  400. References
  401. Bavarian B. (1988). Introduction to Neural Networks for Intelligent Control, IEEE Control Systems Magazine, Vol. 8, No. 2, pp. 3-7.
  402. Ebrahim Osama S., Mohamed A. Badr, Ali S. Elgendy, and Praveen K. Jain,(2010). ANN- Based Optimal Energy Control of Induction Motor Drive in Pumping Applications. IEEE Transactions On Energy Conversion, Vol. 25, No. 3, (Sept. 2010), pp. 652-660.
  403. Fukuda T. & Shibata T. (1992). Theory and Application of Neural Networks for Industrial Control Systems, IEEE Trans. on Industrial Electronics, Vol. 39, No. 6, pp. 472-489.
  404. Henneberger G. and B. Otto (1995). Neural network application to the control of electrical drives. Proceeding of Confrence of Power Electronics Intelligent Motion, pp. 103-123, Nuremberg, Germany.
  405. Karanayil B.; Rahman M. F. & Grantham C. (2003). Implementation of an on-line resistance estimation using artificial neural networks for vector controlled induction motor drive, Proceeding of IECON '03 29th Annual Conference of the IEEE Industrial Electronics Society, Vol. 2, pp. 1703-1708.
  406. Kulawski G. and Mietek A. Brdyś (2000). Stable adaptive control with recurrent networks. Automatica A Journal of IFAC, the International Federation of Automatic Control, vol. 36, No. 1, (Jan. 2000), pp. 5-22.
  407. Kung Y. S., C. M. Liaw, and M. S. Ouyang (1995). Adaptive speed control for induction motor drive using neural network. IEEE Transactions on Industrial Electronics, vol. 42, no. 1, (Feb. 1995), pp. 9-16.
  408. Lippman R. P. (1987). An Introduction to Computing with Neural Nets, IEEE ASSP Magazine, Vol. 4, pp. 4-22.
  409. Ljung L. & Guo L. (1997). Classical model validation for control design purposes, Mathematical Modelling of Systems, 3, 27-42.
  410. Ljung L. & Sjöberg J. (1992). A System Identification Perspective on Neural Nets, Technical Report, Report No. LiTH-ISY-R-1373, At the location: www.control.isy.liu.se, May 27.
  411. Ljung L. (1995). System Identification, Technical Report, Report No. LiTH-ISY-R-1763, At the location: www.control.isy.liu.se.
  412. Ma X. & Na Z. (2000). Neural network speed identification scheme for speed sensor-less DTC induction motor drive system, PIEMC 2000 Proceeding. 3rd Int. Conference on Power Electronics and Motion Control, Vol. 3, pp. 1242-1245.
  413. Mehrotra P. ; Quaicoe J. E. & Venkatesan R. (1996a). Development of an Artificial Neural Network Based Induction Motor Speed Estimator, PESC '96 IEEE Power Electronics Specialists Conference, Vol. 1, pp. 682-688.
  414. Mehrotra P.; Quaicoe J. E. & Venkatesan R. (1996b). Induction Motor Speed Estimation Using Artificial Neural Networks, IEEE Canadian Conference on Electrical and Computer Engineering, Vol. 2, pp. 607-610,
  415. Merabet Adel, Mohand Ouhrouche and Rung-Tien Bui (2006). Neural Generalized Predictive Controller for Induction Motor, International Journal of Theoretical and Applied Computer Sciences, Vol. 1, 1 (2006), pp. 83-100.
  416. Mohamed H. A. F.; Yaacob S. & Taib M. N. (1997). Induction Motor Identification Using Artificial Neural Networks, APEC 97 Electric Energy Conference, pp. 217-221, 29-30th Sep..
  417. Ninness B. & Goodwin G. C. (1994). Estimation of Model Quality, 10th IFAC Symposium Proceeding. on System Identification, 1, pp. 25-44.
  418. Orłowska-Kowalska T. and C. T. Kowalski (1996). Neural network based flux observer for the induction motor drive. Proceedingceding of International Confrence of Power Electronics Motion Control, pp. 187-191, Budapest, Hungary, 1996.
  419. Patterson D. W. (1996). Artificial Neural Networks: Theory and Applications, Simon and Schuster (Asia) Pte. Ltd., Singapore: Prentice Hall.
  420. Raison B., F. Francois, G. Rostaing, and J. Rogon (2000). Induction drive monitoring by neural networks. Proceeding of IEEE International Conference of Industrial Electronics,Control Instrumentation, pp. 859-863, Nagoya, Japan, 2000.
  421. Sharma A. K., R. A. Gupta, Laxmi Srivastava (2007). Performance of Ann Based Indirect Vector Control Induction Motor Drive, Journal of Theoretical and Applied Information Technology, Vol. 3, No. 3, (2007), pp 50-57.
  422. Simoes M. G. and B. K. Bose (1995).Neural network based estimation of feedback signals for a vector controlled induction motor drive. IEEE Transactions on Industry Applications., vol. 31, no. 3, (May/Jun. 1995), pp. 620-629.
  423. Sjöberg J.; Zhang Q., Ljung L., Benveniste A., Deylon B., Glorennec P. Y., Hjalmarsson H., & Juditsky A. (1995). Nonlinear Black-Box Models In System Identification: A Unified Overview, Automatica, Vol. 31, No. 12, pp. 1691-1724.
  424. Toqeer R. S. & Bayindir N. S. (2000). Neurocontroller for induction motors, ICM 2000. Proceeding. 12th Int. Conference on Microelectronics, pp. 227-230.
  425. Vas P. (1990). Vector Control of AC Machines, Clarendon Press, Oxford.
  426. Weber M.; Crilly P. B. & Blass W. E. (1991). Adaptive Noise Filtering Using an Error- Backpropagation Neural Network, IEEE Trans. Instrum. Meas., Vol. 40(5), pp. 820-825.
  427. Wishart M. T. & Harley R. G. (1995). Identification And Control Of Induction Machines Using Artificial Neural Networks, IEEE Transactions on Industry Applications, Vol. 31(3), pp. 612-619.
  428. Wlas M.; Krzeminski, Z.; Guzinski, J.; Abu-Rub, H.; Toliyat, H.A. (2005). Artificial- Neural-Network-Based Sensorless Nonlinear Control of Induction Motors, IEEE Transection of Energy conversion, Vol. 20, 3 (Sept 2005), pp. 520-528.
  429. Yabuta T. & Yamada T. (1991). Learning Control Using Neural Networks. Proceeding of the 1991 IEEE International Conference on Robotics and Automation, Vol. 1, pp. 740-745. Reference Control of RUAV during Hover Bhaskar Prasad Rimal 1 , Idris E. Putro 2 , Agus Budiyono 2 , Dugki Min 3 and Eunmi Choi 1
  430. References
  431. A. U. Levin, k. s Narendra," Control of Nonlinear Dynamical Systems Using Neural Networks: Controllability and Stabilization", IEEE Transactions on Neural Networks, 1993, Vol. 4, pp.192-206
  432. A. U. Levin, k. s Narendra," Control of Nonlinear Dynamical Systems Using Neural Networks-Part II: Observability, Identification and Control", IEEE Transactions on Neural Networks, 1996, Vol. 7, pp. 30-42
  433. David E. Rumelhart et al., "The basic ideas in neural networks", Communications of the ACM, v.37 n.3, p.87-92, March 1994
  434. E. R. Mueller, "Hardware-in-the-loop Simulation Design for Evaluation of Unmanned Aerial Vehicle Control Systems", AIAA Modeling and Simulation Technologies Conference and Exhibit , 20 -23 August, 2007, Hilton Head, South Carolina
  435. E. N. Johnson and S. Fontaine, "Use of flight simulation to complement flight testing of low-cost UAVs", AIAA Modeling and Simulation Technologies Conference and Exhibit, Montreal, Canada, 2001
  436. MATLAB and Simulink for Technical Computing, Available from: http://www.mathworks.com
  437. Oliver Nelles, "Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models, Springer
  438. Cybenko, G., "Approximation by Superposition of a Sigmoidal Function, Mathematics of Control, Signals and Systems, 303-314.
  439. N. K. and K. Parthasarathy, Gradient methods for the optimization of dynamical systems containing neural networks. IEEE Trans. on Neural Networks, 252-262.
  440. B.G Martzios and F.L. Lewis, "An algorithm for the computation of the transfer function matrix of generalized two-dimensional systems " Journal of Circuit, System, and Signal Processing, Volume 7, Number 4 / December, 1988
  441. Budiyono A, Sudiyanto T, Lesmana H., "First Principle Approach to Modelling of Small Scale Helicopter", International Conference on Intelligent Unmanned System, 2007
  442. B. Mettler, T. Kanade, M.B. Tischler, "System Identification Modeling of a Model-Scale Helicopter", CMU-RI-TR-00-03. 2000.
  443. E. D. Beckmann, G. A. Borges, "Nonlinear Modeling, Identification and Control for a Simulated Miniature Helicopter," Robotic Symposium. LARS'08, pp.53-58, 2008.
  444. D. W. Marquardt. "An algorithm for least-squares estimation of nonlinear parameters". SIAM Journal on Applied Mathematics, Vol. 11 No.2 pp. 431-441, 1963.
  445. S. Haykin, "Neural networks: A comprehensive foundation", IEEE Press, New York, USA, 1994
  446. K. S. Narendra and K. Parthasarathy, "Identification and control of dynamical systems using neural networks," IEEE Transactions on Neural Networks, vol. 1, no. 1, pp. 4-27, 1990.
  447. La Civita, M., G., P., Messner, W. C., and Kanade, T., "Design and Flight Testing of a High-Bandwidth H∞ Loop Shaping Controller for a Robotic Helicopter," Proceedings of the AIAA Guidance, Navigation, and Control Conference, No. AIAA 2002-4836, 2002.
  448. Sahasrabudhe, V., & Celi, R., "Improvement of off-design characteristics in integrated rotor-flight control system optimization". AHS, annual forum 53rd Virginia Beach, VA, April 29-May 1, 1997, Proceedings. Alexandria, VA, American Helicopter Society, 1997. Vol. 1 (A97-29180 07-01).
  449. Smerlas, A., Postlethwaite, I., Walker, D. J., Strange, M. E., Howitt, J., Horton, R. I., Gubbels, A. W., & Baillie, S. W. , "Design and flight testing of an H-infinity controller for the NRC Bell 205 experimental fly-by-wire helicopter. AIAA GNC conference, 1998.
  450. Li-Xin Wang, "Design and analysis of fuzzy identifiers of nonlinear dynamic systems". IEEE Transactions on Automatic Control, 40(1), 1995.
  451. Shaaban A. Salman, Vishwas R. Puttige, and Sreenatha G. Anavatti, "Real-time Validation and Comparison of Fuzzy Identification and State-space Identification for a UAV Platform" Proceeding of the 2006 IEEE International Conference on Control Applications, pages 2138-2143, 2006.
  452. R. Pintelon and J. Schoukens, "System Identification: A Frequency Domain Approach" Wiley-IEEE Press, 1st edition, 2001.
  453. Kumpati S. Narendra and Kannan Parthasarathy, "Identification and Control of Dynamical Systems Using Neural Networks" IEEE transaction on Neural Networks, 1(1), 1990.
  454. Magnus Norgaard, "Neural Network Based System Identification Tool Box", Version 2, 2000
  455. Budiyono, A. and Sutarto, H.Y., Linear Parameter Varying Model Identification for Control of Rotorcraft-based UAV, Fifth Indonesia-Taiwan Workshop on Aeronautical Science, Technology and Industry, Tainan, Taiwan, November 13-16, 2006
  456. M. M. Korjani, O.Bazzaz, M. B. Menhaj, "Real time identification and control of dynamics systems using recurrent neural network", Journal of Artificial Intelligence Review, Springer, August 2009
  457. W. Yu, X. Li, "Recurrent fuzzy neural networks for nonlinear system identification", 22nd IEEE International Symposium on Intelligent Control Part of IEEE Multi- conference on Systems and Control, Singapore, 1-3 October 2007.
  458. Shim D. H., Kin H. J., Sastry. "Control System Design for Rotorcraft-based Unmanned Aerial Vehicles using Time-domain System Identification". IEEE International Conference on Control Application, 2000. pp. 808-813
  459. References
  460. Singh, G. K. & Kazzaz, S. A. S. A. (2003). Induction Machine Drive Condition Monitoring and Diagnostic Research -a Survey, Electric Power Systems Research, Vol. 64, pp. 145- 158.
  461. Huang, H. -H. (1993). Transputer-Based Machine Fault Diagnostic, Ph.D. Dissertation, Department of Industrial Engineering, The University of Iowa, Iowa City, Iowa.
  462. Knapp, G. M. and Wang, H. -P. (1992). Machine Fault Classification: A Neural Network Approach, International Journal of Production Research, Vol. 30, No. 4, pp. 811-823.
  463. Knapp, G. M., (1992). Hierarchical Integrated Maintenance Planning for Automated Manufacturing Systems, Ph.D. Dissertation, Department of Industrial Engineering, The University of Iowa, Iowa City, Iowa.
  464. Carpenter, G. A. & Grossberg, S. (1987b). ART2: Self-Organization of Stable Category Recognition Codes for Analog Input Patterns, Applied Optics, Vol. 26, No. 23, December, pp. 4919-4930.
  465. Carpenter, G. A.; Grossberg, S. & Reynolds, J. H. (1991). ARTMAP: Supervised Real-Time Learning and Classification of Non-stationary Data by a Self-Organizing Neural Network, Neural Networks, Vol. 4, pp. 565-588.
  466. Spoerre, J. K. (1993). Machine Performance Monitoring and Fault Classification Using an Exponentially Weighted Moving Average Scheme, Master Thesis, Department of Industrial Engineering, The University of Iowa, Iowa City, IA.
  467. Monk, R. (1972). Vibration Measurement Gives Early Warning of Mechanical Faults, Process Engineering, November, pp. 135-137.
  468. Wheeler, P. G. (1968). Bearing Analysis Equipment Keeps Downtime Down, Plant Engineering, Vol. 25, pp. 87-89.
  469. Gersch, W. & Liu, T. S. (1976). Time Series Methods for the Synthesis of Random Vibration Systems, ASME Journal of Applied Mechanical, Vol. 43, No. 1, pp. 159-165.
  470. Akaike, H. (1969). Power Spectrum Estimation through Autoregression Model Fitting, Ann. Inst. Stat. Math., Vol. 21, pp. 407-419.
  471. Akaike, H. (1974). A New Look at the Statistical Model Identification, IEEE Transactions on Automation Control, Vol. AC-19, December, pp. 716-723.
  472. Gersch, W.; Brotherton, T. & Braun, S. (1983). Nearest Neighbor-Time Series Analysis Classification of Faults in Rotating Machinery, Transactions of the ASME, Vol. 105, April, pp. 178-184.
  473. Swingler, D. N. (1980). Frequency Errors in MEM processing, IEEE Transactions on Acoustic, Speech, Signal Processing, Vol. ASSP-28, April, pp. 257-259.
  474. Kay, S. M. (1988). Modern Spectral Estimation: Theory and Application, Prentice Hall Inc., NJ.
  475. Marple, S. L. Jr. (1987). Digital Spectral Analysis with Applications, Prentice Hall Inc., NJ.
  476. Mathew, J. & Alfredson, R. J. (1984). The Condition Monitoring of Rolling Element Bearings Using Vibration Analysis," Journal of Vibration, Acoustics, Stress, and Reliability in Design, Vol. 106, July, pp. 447-453.
  477. Mathew, J. (1989). Monitoring the Vibrations of Rotating Machine Elements--An Overview, ASME, DE Vol. 18-5, pp. 15-22.
  478. Dyer, D. & Stewart, R. M. (1978). Detection of Rolling Element Bearing Damage by Statistical Vibration Analysis, Transactions of the ASME Journal of Mechanical Design, Vol. 100, April, pp. 229-235.
  479. Grossberg, S. (1976a). Adaptive Pattern Classification and Universal I: Parallel Development and Coding of Neural Feature Detectors, Biological Cybernetics, Vol. 23, pp. 121-134.
  480. Grossberg, S. (1976b). Adaptive Pattern Classification and Universal II: Feedback Expectation Olfaction and Illusions, Biological Cybernetics, Vol. 23, pp. 187-202.
  481. Grossberg, S. (1987a). Competitive Learning: from Interactive Activation to Adaptive Resonance, Cognitive Science, Vol. 11, pp. 23-63.
  482. Banquet, J. P. & Grossberg, S. (1987). Probing Cognitive Processes Through the Structure of Event-related Potentials during Learning: an Experimental and Theoretical Analysis, Applied Optics, Vol. 26, No. 23, December, pp. 4931-4944.
  483. Air compressor
  484. Service Unit
  485. SPC 200 Controller
  486. Analog Pressure Transducers 5. Gripper
  487. NI Compact FieldPoint System 10. Power Supply other. Since they did not need training, they are very convenient for industrial applications. However, it is unrealistic to expect them to assign different categories for the normal operation and each fault modes, and classify all the incoming cases accurately.
  488. References
  489. Aykut, S., Demetgul, M. & Tansel, I. N. (2010). Selection of Optimum Cutting Condition of Cobalt Based Alloy with GONN. The International Journal of Advanced Manufacturing Technology, Vol. 46, No. 9-12, pp. 957-967.
  490. Beale, M. H., Hagan, M. T. & Demuth, H. B. (2010). Neural Network Toolbox 7 User Guide, Mathworks. http://www.mathworks.com/help/pdf_doc/nnet/nnet.pdf.
  491. Belforte, G., Mauro, S. & Mattiazzo, G. (2004). A method for increasing the dynamic performance of pneumatic servo systems with digital valves, Mechatronics, Vol.14, pp. 1105-1120.
  492. Bryson, A. E., Ho, Y. C. (1975). Applied optimal control: optimization, estimation, and control. Taylor & Francis Publishing, pp. 481.
  493. Bouamama, B.O. et al. (2005). Fault detection and isolation of smart actuators using bond graphs and external models, Control Engineering Practice, Vol. 13, pp.159-175.
  494. Carpenter, G. A & Grossberg, S. (1987). ART-2: Self-Organization of Stable Category Recognition Codes for Analog Input Pattern, Applied Optics, Vol. 26, pp. 4919-4930.
  495. Carpenter, G. A., Grossberg S., & Reynolds J. H. (1991). ARTMAP: Supervised real-time learning and classification of nonstationary data by a self-organizing neural network, Neural Networks , Vol. 4, pp.565-588.
  496. Carpenter, G. A., Grossberg, S. & Rosen, D. B. (1991a). ART 2-A: An adaptive resonance algorithm for rapid category learning and recognition, Neural Networks , Vol. 4, pp. 493-504.
  497. Carpenter, G. A., Grossberg, S. & Rosen, D. B. (1991b). Fuzzy ART: Fast stable learning and categorization of analog patterns by an adaptive resonance system, Neural Networks , Vol. 4, pp. 759-771.
  498. Carpenter, G. A. et al. (1992). Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps, IEEE Transactions on Neural Networks, Vol. 3, pp. 698-713.
  499. Chen, C. & Mo, C. (2004). A method for intelligent fault diagnosis of rotating machinery, Digital Signal Processing, Vol. 14, pp. 203-217.
  500. Chena, P. et al. (2007). A study of hydraulic seal integrity. Mechanical Systems and Signal Processing, Vol. 21, pp.1115-1126.
  501. Demetgul M.; Tansel IN. & Taskin S. (2009). Fault Diagnosis of Pneumatic Systems with Artificial Neural Network Algorithms. Expert Systems with Applications, Vol. 36, No. 7, pp. 10512-10519.
  502. Garrett, A. (2003). Fuzzy ART and Fuzzy ARTMAP Neural Networks, http://www.mathworks.com/matlabcentral/fileexchange/4306.
  503. Gary M. & Ning, S., (2007). Experimental Comparison of Position Tracking Control Algorithms for Pneumatic Cylinder Actuators, IEEE/ASME Transactions on Mechatronics, October 2007.
  504. Grossberg S. (1987). Competitive learning: From interactive activation to adaptive resonance, Cognitive Science, Vol. 11, pp. 23-63.
  505. Huang, R.; Xi, L.; Li, X.; Liu, C.R.; Qiu, H. & Lee, J. (2007). Residual life predictions for ball bearings based on self-organizing map and back propagation Neural network methods, Mechanical Systems and Signal Processing, Vol. 21, pp.193-207.
  506. Karpenko, M.; Sepehri, N. & Scuse, D. (2003). Diagnosis of process valve actuator faults using a multilayer Neural network. Control Engineering Practice, Vol. 11, pp.1289- 1299.
  507. Lee, I. S.; Kim, J. T.; Lee, J. W.; Lee, D. Y. & Kim, K. Y. (2003). Model-Based Fault Detection and Isolation Method Using ART2 Neural Network, International Journal of Intelligent Systems, Vol.18, pp. 1087-1100.
  508. Li, X. & Kao, I. (2005). Analytical fault detection and diagnosis (FDD) for pneumatic systems in robotics and manufacturing automation. Intelligent Robots and Systems, IEEE/RSJ International Conference, pp.2517-2522.
  509. Lu, P. J.; Hsu, T. C.; Zhang, M. C. & Zhang, J. (2000), An Evaluation of Engine Fault Diagnostics Using Artificial Neural Networks, ASME J. Eng. Gas Turbines Power, Vol. 123, pp. 240-246.
  510. McGhee, J.; Henderson, I. A. & Baird, A. (1997). Neural networks applied for the identification and fault diagnosis of process valves and actuators, Measurement, Vol. 20, No. 4, pp. 267-275.
  511. Mendonça, L. F.; Sousa, J. M. C. & Costa, J. M. G. (2009). An architecture for fault detection and isolation based on fuzzy methods, Expert Systems with Applications. Vol. 36 pp. 1092-1104.
  512. Na, C. & Lizhuang, M. (2008). Pattern Recognition Based on Weighted and Supervised ART2. International Conference on Intelligent System and Knowledge Engineering, Xiamen, China, Nov. 17-18, 2008,Vol. 2, pp. 98-102.
  513. Nakutis, Ž., Kaškonas, P. (2005). Application of ANN for pneumatic cylinder leakage diagnostics. Matavimai, Vol. 36, No.4, pp.16-21.
  514. Nakutis, Ž. & Kaškonas, P. (2007. Pneumatic cylinder diagnostics using classification methods. Instrumentation and Measurement Technology Conference Proceedings, Warsaw, 1-3 May 2007, pp.1-4.
  515. Nakutis, Ž. & Kaškonas, P. (2008). An approach to pneumatic cylinder on-line conditions monitoring. Mechanika. Kaunas: Technologija, Vol. 4, No. 72, pp.41-47.
  516. Nazir, M. B. & Shaoping, W. (2009). Optimization Based on Convergence Velocity and Reliability for Hydraulic Servo System, Chinese Journal of Aeronautics, Vol. 22, pp. 407-412.
  517. Ning, S. & Bone, G. M. (2005). Development of a nonlinear dynamic model for a servo pneumatic positioning system, Proc. IEEE Int. Conf. Mechatronics Autom., pp. 43-48.
  518. Nogami, T. et al. (1995). Failure diagnosis system on pneumatic control valves by neural networks. IEEE International Conference on Neural Networks, Vol. 2, pp. 724-729.
  519. Rajakarunakaran, S.; Venkumar, P.; Devaraj, D. & Rao, K.S.P. (2008). Artificial neural network approach for fault detection in rotary system, Applied Soft Computing, Vol. 8, No. 1, pp.740-748.
  520. Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1976). Learning internal representations by error propagation. In Rumelhart, D. E. and McClelland, J. L., editors, Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Volume 1: Foundations, MIT Press, Cambridge, MA. pp 318-362.
  521. Sepasi, M. & Sassani, F. (2010). On-line Fault Diagnosis of Hydraulic Systems Using Unscented Kalman Fitler, International Journal of Control and Automation Systems, Vol. 8, No. 1, pp. 149-156.
  522. Shi, L. & Sepehri, N. (2004). Adaptive Fuzzy-Neural-Based Multiple Models for Fault Diagnosis of a Pneumatic Actuator, Proceeding of the 2004 American Control Conference, Boston. Massachusetts, June 30 -July 2, 2004.
  523. Song, S. O.; Lee, G. & Yoon, E.N. (2004). Process Monitoring of an Electro-Pneumatic Valve Actuator Using Kernel Principal Component Analysis, Proceedings of the International Symposium on Advanced Control of Chemical Processes. Hong Kong, China, 11-14 January 2004.
  524. Taghizadeh, M.; Ghaffari, A. & Najafi, F. (2009). Improving dynamic performances of PWM- driven servo-pneumatic systems via a novel pneumatic circuit, ISA Transactions, Vol.48, pp. 512-518.
  525. Takosoglu, J. E.; Dindorf, R. F. & Laski, P. A. (2009). Rapid prototyping of fuzzy controller pneumatic servo-system. International Journal of Advanced Manufacturing Technology, Vol. 40, No.3/4, pp. 349-361.
  526. Tansel, I. N. ; Demetgul, M. ; Leon, R. A. ; Yenilmez, A. & Yapici A. (2009). Design of Energy Scavengers of Structural Health Monitoring Systems Using Genetically Optimized Neural Network Systems, Sensors and Materials, Vol. 21, No. 3, pp. 141-153.
  527. Tansel I. N.; Demetgul M. & Sierakowski R. L. (2009). Detemining Initial Design Parameters By Using Genetically Optimized Neural Network Systems. Sapuan SM, Selangor S, Mujtaba IM(ed) Composite Materials Technology: Neural Network Applications. Taylor & Francis(CRC Press).
  528. Tsai Y. C. & Huang, A. (2008). Multiple-surface sliding controller design for pneumatic servo systems, Mechatronics, Vol. 18, pp. 506-512.
  529. Uppal, F.J.; Patton, R.J. & Palade, V. (2002). Neuro-fuzzy based fault diagnosis applied to an electro-pneumatic valve, Proceedings of the 15th IFAC World Congress, Barcelona, Spain, 2002, pp. 2483-2488.
  530. Uppal, F. J.; & Patton, R. J. (2002). Fault Diagnosis of an Electro-pneumatic Valve Actuator Using Neural Networks With Fuzzy Capabilities, European Symposium on Artificial Neural Networks, Bruges, Belgium, 24-26 April 2002, pp. 501-506.
  531. Wang, J. et al. (2004). Identification of pneumatic cylinder friction parameters using genetic algorithms. IEEE/ASME Transactions on Mechatronics, Vol. 9, No.1, pp. 100-104.
  532. Yang, B. S.; Han, T. & An J. L. (2004). ART-KOHONEN neural network for fault diagnosis of rotating machinery, Mechanical Systems and Signal Processing, Vol. 18, pp. 645-657.
  533. Yang, W.X. (2006). Establishment of the mathematical model for diagnosing the engine valve faults by genetic programming. Journal of Sound and Vibration, Vol. 293, pp.213-226.
  534. References
  535. Al-Assadi, H.M.A.A.; Hamouda, A.M.S.; Ismail, N. & Aris, I. (2007). An adaptive learning algorithm for controlling a two-degree-of-freedom serial ball-and-socket actuator. Proceedings of the IMechE Part I Journal of Systems & Control Engineering, Vol.221, No. 7,pp.1001-1006.
  536. Antonelli, G.; Chiaverini, S. & Fusco, G. (2003). A new on-line algorithm for inverse kinematics of robot manipulators ensuring path-tracking capability under joint limits. IEEE Transaction on Robotics and Automation, Vol.19, No.1, pp. 162-167.
  537. Bingual, Z.; Ertunc, H.M. & Oysu, C. (2005). Comparison of Inverse Kinematics Solutions Using Neural Network for 6R Robot Manipulator with Offset. ICSC congress on Computational Intelligence.
  538. Driscoll, J.A. (2000). Comparison of neural network architectures for the modeling of robot inverse kinematics. Proceedings of the IEEE, south astcon, pp. 44-51.
  539. D'Souza, A.; Vijayakumar, S. & Schaal, S. (2001). Learning Inverse Kinematics. Proceedings of the 2001 IEEE/ RSJ International Conference on Intelligent Robots and Systems, pp.298- 303, Maui, Haw-USA.
  540. Fu, K.S.; Gonzalez, R.C. & Lee, C.S.G. (1987). Robotics control, Sensing, Vision and intelligence, McGraw-Hill Book Co, New York.
  541. Funahashi, K.I., 1998. On the approximate realization of continuous mapping by neural networks. Journal of Neural Networks, Vol.2, No.3, pp.183-192.
  542. Graca, R.A. & Gu, Y. (1993). A Fuzzy Learning Algorithm for Kinematic Control of a Robotic System. Proceeding of the 32nd Conference on Decision and Control, pp.1274-1279, San Antonio, Texas, USA.
  543. Hasan, A.T.; Hamouda, A.M.S.; Ismail, N. & Al-Assadi, H.M.A.A. (2007). A new adaptive learning algorithm for robot manipulator control. Proceeding of the IMechE, Part I: Journal of System and Control Engineering, Vol.221, No.4, pp. 663-672.
  544. Hasan, A.T.; Hamouda, A.M.S.; Ismail, N. & Al-Assadi, H.M.A.A.(2006). An adaptive- learning algorithm to solve the inverse kinematics problem of a 6 D.O.F serial robot manipulator. Journal of Advances in Engineering Software, Vol.37, pp. 432-438.
  545. Haykin S. (1994). Neural Networks. A Comprehensive Foundation. New York: Macmillan.
  546. Hornik, K. (1991). Approximation capabilities of multi-layer feed forward networks. IEEE Trans. Neural Networks, Vol.4, No.2, pp. 251-257.
  547. Hu, Z.; FU, Z. & Fang, H. (2002). Study of singularity robust inverse of Jacobian matrix for manipulator, Proceedings of the First International Conference on Machine Learning and Cybernetics, pp. 406-410,China, Beijing.
  548. Kalogirou, S.A. (2001) Artificial Neural Networks In Renewable Energy Systems Applications: a review. Renewable and Sustainable Energy Reviews. Vol. 5,pp.373-401.
  549. Karilk, B. & Aydin, S. (2000). An improved approach to the solution of inverse kinematics problems for robot manipulators. Journal of Engineering applications of artificial intelligence, Vol.13, pp.159-164.
  550. Köker, R. (2005). Reliability-based approach to the inverse kinematics solution of robots using Elman's networks. Engineering Applications of Artificial Intelligence, Vol.18, pp. 685-693.
  551. Köker, R.; Öz, C.; Çakar.T. & Ekiz, H. (2004). A study of neural network based inverse kinematics solution for a three-joint robot. Journal of Robotics and Autonomous Systems, Vol.49, pp. 227-234.
  552. Kuroe, Y.; Nakai, Y. & Mori, T. (1994). A new Neural Network Learning on Inverse Kinematics of Robot Manipulators, International Conference on Neural Networks, IEEE world congress on computational Intelligence. Vol.5, pp. 2819-2824.
  553. Nakamura, Y. & Hanafusa, H. (1986). Inverse kinematic solutions with singularity robustness for robot manipulator control, Journal of Dynamic Systems Measurements Control, Vol. 108,pp. 163-171.
  554. Ogawa, T.; Matsuura, H. & Kanada, H. (2005). A Solution of Inverse Kinematics of Robot Arm Using Network Inversion. Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation.
  555. Santosh, A. ;Devendra P. Garg. (1993). Training back propagation and CMAC neural networks for control of a SCARA robot. Journal of Engineering Applications of Artificial Intelligence. Vol.6.No.2. pp.105-115.
  556. Wampler, C. W. & Leifer, L. J. (1988). Applications of damped least-squares methods to resolved-rate and resolved-acceleration control of manipulators. Journal of Dynamic Systems Measurements Control, Vol. 110,pp. 31-38.
  557. Wampler, C. W. (1986). Manipulator inverse kinematic solutions based on vector formulations and damped least-squares methods, IEEE Transaction Syst., Man, Cybernetics. Vol. 16,pp. 93-101.
  558. Whitney. E. (1969). Resolved motion rate control of manipulators and human prostheses. IEEE Transaction Man-Mach. Systems, Vol. MMS-10,pp.47-53.
  559. Zurda, M. J. (1992). Introduction to Artificial Neural System Network. West Publishing Companies, ISBN 0-314-93397-3, St. Paul, MN, USA.