Academia.eduAcademia.edu

Data-driven aerodynamic shape design with distributionally robust optimization approaches

2023, arXiv (Cornell University)

https://doi.org/10.48550/ARXIV.2310.08931
descriptionSee full PDF

Abstract

We formulate and solve data-driven aerodynamic shape design problems with distributionally robust optimization (DRO) approaches. Building on the findings of the work [13], we study the connections between a class of DRO and the Taguchi method in the context of robust design optimization. Our preliminary computational experiments on aerodynamic shape optimization in transonic turbulent flow show promising design results.

References (44)

  1. A. Ben-Tal, D. Den Hertog, A. De Waegenaere, B. Melenberg, and G. Rennen, Robust solutions of optimization problems affected by uncertain probabilities, Management Science 59 (2013), pp. 341-357.
  2. H.G. Beyer and B. Sendhoff, Robust optimization-a comprehensive survey, Computer methods in applied mechanics and engineering 196 (2007), pp. 3190-3218.
  3. S.L. Brunton, J. Nathan Kutz, K. Manohar, A.Y. Aravkin, K. Morgansen, J. Klemisch, N. Goebel, J. Buttrick, J. Poskin, A.W. Blom-Schieber, et al., Data-driven aerospace engineering: reframing the industry with machine learning, AIAA Journal 59 (2021), pp. 2820-2847.
  4. L. Chen, K.U. Bletzinger, N.R. Gauger, and Y. Ye, A gradient descent akin method for constrained optimization: algorithms and applications, arXiv preprint arXiv:2302.11898 (2023).
  5. W. Chen, J.K. Allen, K.L. Tsui, and F. Mistree, A procedure for robust design: minimizing variations caused by noise factors and control factors (1996).
  6. C. Dapogny, F. Iutzeler, A. Meda, and B. Thibert, Entropy-regularized wasserstein distri- butionally robust shape and topology optimization, Structural and Multidisciplinary Opti- mization 66 (2023), p. 42.
  7. E. Delage and Y. Ye, Distributionally robust optimization under moment uncertainty with application to data-driven problems, Operations research 58 (2010), pp. 595-612.
  8. M. Drela, Pros & cons of airfoil optimization, in Frontiers of Computational Fluid Dy- namics 1998, World Scientific, 1998, pp. 363-381.
  9. T.D. Economon, F. Palacios, S.R. Copeland, T.W. Lukaczyk, and J.J. Alonso, SU2: An Open-Source Suite for Multiphysics Simulation and Design, AIAA Journal 54 (2016), pp. 828-846.
  10. P.M. Esfahani and D. Kuhn, Data-driven distributionally robust optimization using the Wasserstein metric: Performance guarantees and tractable reformulations, arXiv preprint arXiv:1505.05116 (2015).
  11. C. Geiersbach and W. Wollner, A Stochastic Gradient Method with Mesh Refinement for PDE Constrained Optimization under Uncertainty, SIAM Journal on Scientific Comput- ing 42 (2020), pp. A2750-A2772.
  12. S. Ghosh, M. Squillante, and E. Wollega, Efficient stochastic gradient descent for learning with distributionally robust optimization, arXiv preprint arXiv:1805.08728 (2018).
  13. J.y. Gotoh, M.J. Kim, and A.E. Lim, Robust empirical optimization is almost the same as mean-variance optimization, Operations research letters 46 (2018), pp. 448-452.
  14. C.R. Gumbert, P.A. Newman, and G.J.W. Hou, High-Fidelity Computational Optimiza- tion for 3-D Flexible Wings: Part II -Effect of Random Geometric Uncertainty on Design, Optimization and Engineering 6 (2005), pp. 139-156.
  15. L. Huyse, Solving Problems of Optimization Under Uncertainty as Statistical Decision Problems, in 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, Seattle, WA, USA. American Institute of Aeronautics and Astronautics, AIAA 2001-1519, 2001.
  16. L. Jofre and A. Doostan, Rapid aerodynamic shape optimization under uncertainty using a stochastic gradient approach, Structural and Multidisciplinary Optimization 65 (2022), p. 196.
  17. M.G. Kapteyn, K.E. Willcox, and A.B. Philpott, Distributionally robust optimization for engineering design under uncertainty, International Journal for Numerical Methods in Engineering 120 (2019), pp. 835-859.
  18. H. Kervadec, J. Dolz, J. Yuan, C. Desrosiers, E. Granger, and I.B. Ayed, Constrained deep networks: Lagrangian optimization via log-barrier extensions, in 2022 30th European Signal Processing Conference (EUSIPCO). IEEE, 2022, pp. 962-966.
  19. D.P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980 (2014).
  20. D. Kraft, A Software Package for Sequential Quadratic Programming, Tech. Rep., DFVLR, Oberpfaffenhofen, Germany, 1988.
  21. H. Lam, Robust sensitivity analysis for stochastic systems, Mathematics of Operations Research 41 (2016), pp. 1248-1275.
  22. D.S. Lee, L.F. Gonzalez, J. Périaux, and K. Srinivas, Robust Design Optimisation Using Multi-Objective Evolutionary Algorithms, Computers & Fluids 37 (2008), pp. 565-583.
  23. D. Levy, Y. Carmon, J.C. Duchi, and A. Sidford, Large-scale methods for distributionally robust optimization, Advances in Neural Information Processing Systems 33 (2020), pp. 8847-8860.
  24. Y. Liu, J. Ding, and X. Liu, IPO: Interior-point policy optimization under constraints, in Proceedings of the AAAI conference on artificial intelligence, Vol. 34. 2020, pp. 4940-4947.
  25. J.R. Martins, Aerodynamic design optimization: Challenges and perspectives, Computers & Fluids 239 (2022), p. 105391.
  26. V.N. Nair, B. Abraham, J. MacKay, G. Box, R.N. Kacker, T.J. Lorenzen, J.M. Lucas, R.H. Myers, G.G. Vining, J.A. Nelder, et al., Taguchi's parameter design: a panel discussion, Technometrics 34 (1992), pp. 127-161.
  27. H. Namkoong and J.C. Duchi, Variance-based regularization with convex objectives, Ad- vances in neural information processing systems 30 (2017).
  28. M. Nemec, D.W. Zingg, and T.H. Pulliam, Multipoint and multi-objective aerodynamic shape optimization, AIAA journal 42 (2004), pp. 1057-1065.
  29. J. Nocedal and S.J. Wright, Numerical optimization, Springer, 1999.
  30. Y.S. Ong, P.B. Nair, and K.Y. Lum, Max-Min Surrogate-Assisted Evolutionary Algorithm for Robust Design, IEEE Transactions on Evolutionary Computation 10 (2006), pp. 392- 404.
  31. L. Pardo, Statistical inference based on divergence measures, CRC press, 2018.
  32. Y. Polyanskiy and Y. Wu, Lecture notes on information theory, Lecture Notes for ECE563 (UIUC) and 6 (2014), p. 7.
  33. H. Rahimian and S. Mehrotra, Distributionally robust optimization: A review, arXiv preprint arXiv:1908.05659 (2019).
  34. J. Reuther, A. Jameson, J. Alonso, M. Rimlinger, and D. Saunders, Constrained multipoint aerodynamic shape optimization using an adjoint formulation and parallel computers. AIAA paper 97-0103, in 35th Aerospace Sciences Meeting and Exhibit, Reno, Nevada. 1997.
  35. R.T. Rockafellar, Convex analysis, Vol. 11, Princeton university press, 1997.
  36. M. Sagebaum, T. Albring, and N.R. Gauger, High-Performance Derivative Computations using CoDiPack, ACM Transactions on Mathematical Software 45 (2019).
  37. H.E. Scarf, K. Arrow, and S. Karlin, A min-max solution of an inventory problem, Rand Corporation Santa Monica, 1957.
  38. V. Schulz and C. Schillings, Problem Formulations and Treatment of Uncertainties in Aerodynamic Design, AIAA Journal 47 (2009), pp. 646-654.
  39. V. Schulz and C. Schillings, Optimal aerodynamic design under uncertainty, in Manage- ment and Minimisation of Uncertainties and Errors in Numerical Aerodynamics: Results of the German collaborative project MUNA, Springer, 2013, pp. 297-338.
  40. M.W. Trosset, Taguchi and robust optimization, Tech. Rep., 1996.
  41. K.L. Tsui, An overview of taguchi method and newly developed statistical methods for robust design, Iie Transactions 24 (1992), pp. 44-57.
  42. R. Unal and E.B. Dean, Taguchi approach to design optimization for quality and cost: an overview, in 1991 Annual conference of the international society of parametric analysts. 1990.
  43. G.G. Vining and R.H. Myers, Combining taguchi and response surface philosophies: a dual response approach, Journal of quality technology 22 (1990), pp. 38-45.
  44. Z. Wang, P.W. Glynn, and Y. Ye, Likelihood robust optimization for data-driven problems, Computational Management Science 13 (2016), pp. 241-261.