Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2007, Journal of Investigative Dermatology
…
3 pages
1 file
Journal of Investigative Dermatology, 1993
Experimental Dermatology, 2005
Reorganization of hair follicles in human skin organ culture induced by cultured human follicle-derived cells.
Volume 19, Number 2, Jul-Sep (Summer) 2017, Serial Number: 74, 2017
Objective: Dermal papilla and hair epithelial stem cells regulate hair formation and the growth cycle. Damage to or loss of these cells can cause hair loss. Although several studies claim to reconstitute hairs using rodent cells in an animal model, additional research is needed to develop a stable human hair follicle reconstitution protocol. In this study, we have evaluated hair induction by injecting adult cultured human dermal papilla cells and a mixture of hair epithelial and dermal papilla cells in a mouse model. Materials and Methods: In this experimental study, discarded human scalp skins were used to obtain dermal papilla and hair epithelial cells. After separation, cells were cultured and assessed for their characteristics. We randomly allocated 15 C57BL/6 nude mice into three groups that received injections in their dorsal skin. The first group received cultured dermal papilla cells, the second group received a mixture of cultured epithelial and dermal papilla cells, and the third group (control) received a placebo [phosphate-buffered saline (PBS-)]. Results: Histopathologic examination of the injection sites showed evidence of hair growth in samples that received cells compared with the control group. However, the group that received epithelial and dermal papilla cells had visible evidence of hair growth. PKH tracing confirmed the presence of transplanted cells in the new hair. Conclusion: Our data showed that injection of a combination of adult human cultured dermal papilla and epithelial cells could induce hair growth in nude mice. This study emphasized that the combination of human adult cultured dermal papilla and epithelial cells could induce new hair in nude mice.
Journal of Investigative Dermatology, 2013
PubMed, 2017
Objective: Dermal papilla and hair epithelial stem cells regulate hair formation and the growth cycle. Damage to or loss of these cells can cause hair loss. Although several studies claim to reconstitute hairs using rodent cells in an animal model, additional research is needed to develop a stable human hair follicle reconstitution protocol. In this study, we have evaluated hair induction by injecting adult cultured human dermal papilla cells and a mixture of hair epithelial and dermal papilla cells in a mouse model. Materials and methods: In this experimental study, discarded human scalp skins were used to obtain dermal papilla and hair epithelial cells. After separation, cells were cultured and assessed for their characteristics. We randomly allocated 15 C57BL/6 nude mice into three groups that received injections in their dorsal skin. The first group received cultured dermal papilla cells, the second group received a mixture of cultured epithelial and dermal papilla cells, and the third group (control) received a placebo [phosphate-buffered saline (PBS-)]. Results: Histopathologic examination of the injection sites showed evidence of hair growth in samples that received cells compared with the control group. However, the group that received epithelial and dermal papilla cells had visible evidence of hair growth. PKH tracing confirmed the presence of transplanted cells in the new hair. Conclusion: Our data showed that injection of a combination of adult human cultured dermal papilla and epithelial cells could induce hair growth in nude mice. This study emphasized that the combination of human adult cultured dermal papilla and epithelial cells could induce new hair in nude mice.
Journal of Cell Science, 2011
Experimental Dermatology, 2012
Engineered skin substitutes (ESS) have been used successfully to treat life-threatening burns, but lack cutaneous appendages. To address this deficiency, dermal constructs were prepared using collagen-glycosaminoglycan scaffolds populated with murine dermal papilla cells expressing green fluorescent protein (mDPC-GFP), human dermal papilla cells (hDPC) and/or human fibroblasts (hF). Subsequently, human epidermal keratinocytes (hK) or hK genetically modified to overexpress stabilized b-catenin (hK') were used to prepare ESS epithelium. After 10 days incubation at air-liquid interface, ESS were grafted to athymic mice and were evaluated for 6 weeks. Neofollicles were observed in ESS containing mDPC-GFP, but not hDPC or hF, independent of whether or not the hK were genetically modified. Based on detection of GFP fluorescence, mDPC were localized to the dermal papillae of the well-defined follicular structures of grafted ESS. In addition, statistically significant increases in LEF1, WNT10A and WNT10B were found in ESS with neofollicles. These results demonstrate a model for generation of chimeric hair in ESS.
World Journal of Stem Cells, 2015
Author contributions: Balañá ME, Charreau HE and Leirós GJ substantially contributed to conception and design, acquisition of data, analysis and interpretation of data.
Journal of Dermatological Science, 2010
Hair follicle stem cells in the epithelial bulge are responsible for the continual regeneration of the hair follicle during cycling. The bulge cells reside in a niche composed of dermal cells. The dermal compartment of the hair follicle consists of the dermal papilla and dermal sheath. Interactions between hair follicle epithelial and dermal cells are necessary for hair follicle morphogenesis during development and in hair reconstitution assays. Dermal papilla and dermal sheath cells express specific markers and possess distinctive morphology and behavior in culture. These cells can induce hair follicle differentiation in epithelial cells and are required in hair reconstitution assays either in the form of intact tissue, dissociated freshly-prepared cells or cultured cells. This review will focus on hair follicle dermal cells since most therapeutic efforts to date have concentrated on this aspect of the hair follicle, with the idea that enriching hair-inductive dermal cell populations and expanding their number by culture while maintaining their properties, will establish an efficient hair reconstitution assay that could eventually have therapeutic implications.
Methods Mol. Biol, 2011
The development of hair follicle organ culture techniques is a significant milestone in cutaneous biology research. The hair follicle, or more accurately the “pilo-sebaceous unit”, encapsulates all the important physiologic processes found in the human body; controlled cell growth/death, interactions between cells of different histologic type, cell differentiation and migration, and hormone responsitivity to name a few. Thus, the value of the hair follicle as a model for biological scientific research goes way beyond its scope for ...
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
Developmental Cell, 2014
Journal of Investigative Dermatology, 2001
STEM CELLS Translational Medicine
Experimental Cell Research, 2010
Biomaterials, 2016
Nature Communications, 2018
Tissue Engineering Part B: Reviews, 2013
Journal of The American Academy of Dermatology, 1987
Annals of the New York Academy of Sciences, 1991
Journal of Investigative Dermatology, 2010
Annals of the New York Academy of Sciences, 2006
European Journal of Cell Biology, 2007
Journal of the American Academy of Dermatology, 1987
Journal of Dermatological Science, 1994
Stem Cells Translational Medicine
Annals of the New York Academy of Sciences, 2006
Expert Opinion on Biological Therapy, 2013
Journal of Genes and Cells, 2015
Cytometry Part A, 2017
Experimental Dermatology, 2010
Development, 2013