Academia.eduAcademia.edu

Early exercise decision in American options with dividends, stochastic volatility and jumps

2016, arXiv (Cornell University)

https://doi.org/10.48550/ARXIV.1612.03031
descriptionSee full PDF

Abstract

Using a fast numerical technique, we investigate a large database of investor suboptimal nonexercise of short maturity American call options on dividend-paying stocks listed on the Dow Jones. The correct modelling of the discrete dividend is essential for a correct calculation of the early exercise boundary as confirmed by theoretical insights. Pricing with stochastic volatility and jumps instead of the Black-Scholes-Merton benchmark cuts by a quarter the amount lost by investors through suboptimal exercise. The remaining three quarters are largely unexplained by transaction fees and may be interpreted as an opportunity cost for the investors to monitor optimal exercise.

References (95)

  1. Adolfsson, T., Chiarella, C., Ziogas, A., Ziveyi, J., 2013. Representation and numerical approxi- mation of American option prices under Heston stochastic volatility dynamics. Research Paper 327, Quantitative finance research centre, University of Technology Sidney.
  2. Aït-Sahalia, Y., Kimmel, R. L., 2007. Maximum likelihood estimation of stochastic volatility models. Journal of Financial Economics 83, 413-452.
  3. Aït-Sahalia, Y., Kimmel, R. L., 2010. Estimating affine multifactor term structure models using closed-form likelihood expansions. Journal of Financial Economics 98, 113-144.
  4. Aït-Sahalia, Y., Yu, J., 2006. Saddlepoint approximations for continuous-time Markov processes. Journal of Econometrics 134, 507-551.
  5. Amin, K. I., 1993. Jump diffusion option valuation in discrete time. The Journal of Finance 48, 1833-1863.
  6. Andersen, L., Broadie, M., 2004. Primal-dual simulation algorithm for pricing multidimensional American options. Management Science 50, 1222-1234.
  7. Andersen, T. G., Fusari, N., Todorov, V., 2015. The risk premia embedded in index options. Journal of Financial Economics 117, 558-584.
  8. Andersen, T. G., Fusari, N., Todorov, V., 2016. Short-term market risk implied by weekly options. Journal of Finance, forthcoming.
  9. Andricopoulos, A. D., Widdicks, M., Duck, P. W., Newton, D. P., 2003. Universal option valu- ation using quadrature methods. Journal of Financial Economics 67, 447 -471.
  10. Andricopoulos, A. D., Widdicks, M., Newton, D. P., Duck, P. W., 2007. Extending quadra- ture methods to value multi-asset and complex path dependent options. Journal of Financial Economics 83, 471-499.
  11. Bajgrowicz, P., Scaillet, O., Treccani, A., 2015. Jumps in high-frequency data: Spurious detec- tions, dynamics, and news. Management Science 62, 2198-2217.
  12. Bakshi, G., Cao, C., Chen, Z., 1997. Empirical performance of alternative option pricing models. The Journal of Finance 52, 2003-2049.
  13. Bakshi, G., Kapadia, N., Madan, D., 2003. Stock return characteristics, skew laws, and the differential pricing of individual equity options. Review of Financial Studies 16, 101-143.
  14. Barone-Adesi, G., Whaley, R. E., 1987. Efficient analytic approximation of American option values. The Journal of Finance 42, 301-320.
  15. Barraclough, K., Whaley, R. E., 2012. Early exercise of put options on stocks. The Journal of Finance 67, 1423-1456.
  16. Bates, D. S., 1996. Jumps and stochastic volatility: Exchange rate processes implicit in deutsche mark options. Review of Financial Studies 9, 69-107.
  17. Battauz, A., De Donno, M., Sbuelz, A., 2014. Real options and American derivatives: The double continuation region. Management Science 61, 1094-1107.
  18. Ben-Ameur, H., Breton, M., Martinez, J.-M., 2009. Dynamic programming approach for valuing options in the GARCH model. Management Science 55, 252-266.
  19. Bollen, N. P. B., Whaley, R. E., 2004. Does net buying pressure affect the shape of implied volatility functions? The Journal of Finance 59, 711-753.
  20. Brennan, M. J., Schwartz, E. S., 1977. The valuation of American put options. The Journal of Finance 32, 449-462.
  21. Broadie, M., Chernov, M., Johannes, M., 2007. Model specification and risk premia: Evidence from futures options. The Journal of Finance 62, 1453-1490.
  22. Broadie, M., Chernov, M., Johannes, M., 2009. Understanding index option returns. Review of Financial Studies 22, 4493-4529.
  23. Broadie, M., Detemple, J., 1996. American option valuation: New bounds, approximations, and a comparison of existing methods. Review of Financial Studies 9, 1211-1250.
  24. Broadie, M., Glasserman, P., 1997. Pricing American-style securities using simulation. Journal of Economic Dynamics and Control 21, 1323-1352.
  25. Bunch, D. S., Johnson, H., 2000. The American put option and its critical stock price. The Journal of Finance 55, 2333-2356.
  26. Carr, P., Geman, H., Madan, D. B., Yor, M., 2003. Stochastic volatility for Lévy processes. Mathematical Finance 13, 345-382.
  27. Carr, P., Jarrow, R., Myneni, R., 1992. Alternative characterizations of american put options. Mathematical Finance 2, 87-106.
  28. Chen, D., Härkönen, H. J., Newton, D. P., 2014. Advancing the universality of quadrature methods to any underlying process for option pricing. Journal of Financial Economics 114, 600-612.
  29. Cheng, P., Scaillet, O., 2007. Linear-quadratic jump-diffusion modeling. Mathematical Finance 17, 575-598.
  30. Chiarella, C., El-Hassan, N., Kucera, A., 1999. Evaluation of American option prices in a path integral framework using Fourier-Hermite series expansions. Journal of Economic Dynamics and Control 23, 1387-1424.
  31. Chiarella, C., Ziogas, A., 2005. Pricing American options on jump-diffusion processes using Fourier Hermite series expansions. Quantitative Finance Research Centre Research Paper .
  32. Christoffersen, P., Fournier, M., Jacobs, K., 2015a. The factor structure in equity options. Rotman School of Management Working Paper.
  33. Christoffersen, P., Goyenko, R., Jacobs, K., Karoui, M., 2015b. Illiquidity premia in the equity options market. Available at SSRN 1784868 .
  34. Christoffersen, P., Jacobs, K., 2004. The importance of the loss function in option valuation. Journal of Financial Economics 72, 291-318.
  35. Clarke, N., Parrott, K., 1999. Multigrid for American option pricing with stochastic volatility. Applied Mathematical Finance 6, 177-195.
  36. Cox, J. C., Ross, S. A., Rubinstein, M., 1979. Option pricing: A simplified approach. Journal of Financial Economics 7, 229-263.
  37. Darolles, S., Laurent, J.-P., 2000. Approximating payoffs and pricing formulas. Journal of Eco- nomic Dynamics and Control 24, 1721-1746.
  38. Desai, V. V., Farias, V. F., Moallemi, C. C., 2012. Pathwise optimization for optimal stopping problems. Management Science 58, 2292-2308.
  39. Detemple, J., 2005. American-style derivatives: Valuation and computation. Financial mathe- matics series, Chapman & Hall/CRC Press, Boca Raton, Florida, USA.
  40. Detemple, J., Tian, W., 2002. The valuation of american options for a class of diffusion processes. Management Science 48, 917-937.
  41. Detemple, J. B., Garcia, R., Rindisbacher, M., 2003. A Monte Carlo method for optimal port- folios. The Journal of Finance 58, 401-446.
  42. d'Halluin, Y., Forsyth, P. A., Vetzal, K. R., 2005. Robust numerical methods for contingent claims under jump diffusion processes. IMA Journal of Numerical Analysis 25, 87-112.
  43. Duffie, D., Pan, J., Singleton, K., 2000. Transform analysis and asset pricing for affine jump- diffusions. Econometrica 68, 1343-1376.
  44. Eraker, B., Johannes, M., Polson, N., 2003. The impact of jumps in volatility and returns. The Journal of Finance 58, 1269-1300.
  45. Fang, F., Oosterlee, C. W., 2011. A fourier-based valuation method for bermudan and barrier options under heston's model. SIAM Journal on Financial Mathematics 2, 439-463.
  46. Garman, M. B., 1985. Towards a semigroup pricing theory. The Journal of Finance 40, 847-861.
  47. Geske, R., 1979. A note on an analytical valuation formula for unprotected American call options on stocks with known dividends. Journal of Financial Economics 7, 375-380.
  48. Geske, R., Johnson, H. E., 1984. The american put option valued analytically. The Journal of Finance 39, 1511-1524.
  49. Griebsch, S. A., 2013. The evaluation of European compound option prices under stochastic volatility using Fourier transform techniques. Review of Derivatives Research 16, 135-165.
  50. Guay, F., Schwenkler, G., 2016. Efficient parameter estimation for multivariate jump-diffusions. Unpublished manuscript, boston University.
  51. Hagan, P. S., Kumar, D., Lesniewski, A. S., Woodward, D. E., 2002. Managing smile risk. WILMOTT Magazine pp. 84-108.
  52. Hansen, L. P., Scheinkman, J. A., 2009. Long-term risk: An operator approach. Econometrica 77, 177-234.
  53. Haug, E. G., Haug, J., Lewis, A., 2003. Back to basics: a new approach to the discrete dividend problem. Wilmott magazine 9, 37-47.
  54. Haugh, M. B., Kogan, L., 2004. Pricing American options: a duality approach. Operations Research 52, 258-270.
  55. Heston, S. L., 1993. A closed-form solution for options with stochastic volatility with applications to bond and currency options. Review of Financial Studies 6, 327-343.
  56. Hodder, J. E., Jackwerth, J. C., 2007. Incentive contracts and hedge fund management. Journal of Financial and Quantitative Analysis 42, 811-826.
  57. Huang, J.-z., Subrahmanyam, M. G., Yu, G. G., 1996. Pricing and hedging American options: a recursive investigation method. Review of Financial Studies 9, 277-300.
  58. Hull, J., White, A., 1987. The pricing of options on assets with stochastic volatilities. The Journal of Finance 42, 281-300.
  59. Ibáñez, A., 2003. Robust pricing of the american put option: A note on Richardson extrapolation and the early exercise premium. Management Science 49, 1210-1228.
  60. Ikonen, S., Toivanen, J., 2008. Efficient numerical methods for pricing American options under stochastic volatility. Numerical Methods for Partial Differential Equations 24, 104-126.
  61. in't Hout, K. J., Foulon, S., 2010. ADI finite difference schemes for option pricing in the Heston model with correlation. International Journal of Numerical Analysis and Modeling 7, 303-320.
  62. Jackson, K. R., Jaimungal, S., Surkov, V., 2008. Fourier space time-stepping for option pricing with Lévy models. Journal of Computational Finance 12, 1-29.
  63. Jamshidian, F., 1992. An analysis of American options. Review of Futures Markets 11, 72-80.
  64. Jensen, M. V., Pedersen, L. H., 2016. Early option exercise: Never say never. Journal of Financial Economics 121, 278-299.
  65. Ju, N., 1998. Pricing an American option by approximating its early exercise boundary as a multipiece exponential function. Review of Financial Studies 11, 627-646.
  66. Kelly, B., Pástor, L., Veronesi, P., 2016a. The price of political uncertainty: Theory and evidence from the option market. The Journal of Finance 71, 2417-2480.
  67. Kelly, B. T., Lustig, H., Van Nieuwerburgh, S., 2016b. Too-systemic-to-fail: What option mar- kets imply about sector-wide government guarantees. American Economic Review 106, 1278- 1319.
  68. Kim, I., 1990. The analytic valuation of American options. Review of Financial Studies 3, 547- 572.
  69. Kristensen, D., Mele, A., 2011. Adding and subtracting Black-Scholes: a new approach to approximating derivative prices in continuous-time models. Journal of Financial Ecomonics 102, 390-415.
  70. Lacoste, V., 1996. Wiener chaos: a new approach to option hedging. Mathematical Finance 6, 197-213.
  71. Lamberton, D., Villeneuve, S., 2003. Critical price near maturity for an american option on a dividend-paying stock. The Annals of Applied Probability 13, 800-815.
  72. Leippold, M., Wu, L., 2002. Asset pricing under the quadratic class. The Journal of Financial and Quantitative Analysis 37, 271-295.
  73. Li, C., 2013. Maximum-likelihood estimation for diffusion processes via closed-form density expansions. The Annals of Statistics 41, 1350-1380.
  74. Linetsky, V., 1997. The path integral approach to financial modeling and options pricing. Com- putational Economics 11, 129-163.
  75. Longstaff, F. A., Schwartz, E. S., 2001. Valuing American options by simulation: a simple least-squares approach. Review of Financial Studies 14, 113-147.
  76. Lord, R., Fang, F., Bervoets, F., Oosterlee, C. W., 2008. A fast and accurate FFT-based method for pricing early-exercise options under Lévy processes. SIAM Journal on Scientific Computing 30, 1678-1705.
  77. Madan, D. B., Carr, P. P., Chang, E. C., 1998. The variance gamma process and option pricing. European Finance Review 2, 79-105.
  78. Madan, D. B., Milne, F., 1994. Contingent claims valued and hedged by pricing and investing in a basis. Mathematical Finance 4, 223-245.
  79. Medvedev, A., Scaillet, O., 2010. Pricing American options under stochastic volatility and stochastic interest rates. Journal of Financial Economics 98, 145-159.
  80. Merton, R. C., 1976. Option pricing when underlying stock returns are discontinuous. Journal of Financial Economics 3, 125-144.
  81. Miller, M. H., Rock, K., 1985. Dividend policy under asymmetric information. The Journal of Finance 40, 1031-1051.
  82. O'Sullivan, C., 2005. Path dependent option pricing under Lévy processes. EFA 2005 Moscow Meetings Paper .
  83. Pool, V. K., Stoll, H. R., Whaley, R. E., 2008. Failure to exercise call options: An anomaly and a trading game. Journal of Financial Markets 11, 1-35.
  84. Rogers, L. C. G., 2002. Monte Carlo valuation of American options. Mathematical Finance 12, 271-286.
  85. Roll, R., 1977. An analytic valuation formula for unprotected American call options on stocks with known dividends. Journal of Financial Economics 5, 251-258.
  86. Rubinstein, M., 2000. On the relation between binomial and trinomial option pricing models. Journal of Derivatives 8, 47-50.
  87. Simonato, J.-G., 2016. A simplified quadrature approach for computing Bermudan option prices. International Review of Finance 16, 647-658.
  88. Stanton, R., 1995. Rational prepayment and the valuation of mortgage-backed securities. Review of Financial Studies 8, 677-708.
  89. Sullivan, M. A., 2000. Valuing American put options using gaussian quadrature. Review of Financial Studies 13, 75-94.
  90. Sweldens, W., 1996. The lifting scheme: A custom-design construction of biorthogonal wavelets. Applied and Computational Harmonic Analysis 3, 186-200.
  91. Sweldens, W., 1998. The lifting scheme: A construction of second generation wavelets. SIAM Journal on Mathematical Analysis 29, 511-546.
  92. Vellekoop, M. H., Nieuwenhuis, J. W., 2006. Efficient pricing of derivatives on assets with discrete dividends. Applied Mathematical Finance 13, 265-284.
  93. West, G., 2005. Calibration of the SABR model in illiquid markets. Applied Mathematical Finance 12, 371-385.
  94. Whaley, R. E., 1981. On the valuation of American call options on stocks with known dividends. Journal of Financial Economics 9, 207-211.
  95. Xiu, D., 2014. Hermite polynomial based expansion of European option prices. Journal of Econo- metrics 179, 158-177.