Academia.eduAcademia.edu

Effect of aluminum doped iron oxide nanoparticles on magnetic properties of the polyacrylonitrile nanofibers

2017, Journal of Polymer Engineering

https://doi.org/10.1515/POLYENG-2015-0303

Abstract

In this work, polyacrylonitrile (PAN) was electrospun with and without magnetic nanoparticles (aluminum doped iron oxide) and was turned into magnetic nanofibers. The results showed that nanofibers diameter decreased from 700 nm to 300 nm by adding nanoparticles. Furthermore, pure PAN nanofibers were indicated to have low magnetic ability due to polar bonds that exist in their acrylonitrile groups. Obviously by adding only 4 wt% of the nanoparticles to PAN nanofibers, magnetic ability soared by more than 10 times, but at a higher percentage, it was shown to change just a little due to negative interaction among nanoparticles. This event relates to antiferromagnetically coupling of nanoparticles due to incomplete dispersion at higher percentage.

References (28)

  1. Zhou FL, Gong R-H. Polym. Int. 2008, 57, 837-845.
  2. Niu H, Lin T. J. Nanomater. 2012, 13.
  3. Ahn BW, Kang TJ. J. Appl. Polym. Sci. 125, 1567-1575.
  4. Dario P, Polymer Nanofibers, Royal Society of Chemistry: UK, 2013, p. 132.
  5. Ramakrishna S, Fujihara K, Teo W, Lim T, Ma Z. An Introduction to Electrospinning and Nanofibers, World Scientific: Singapore, 2005, p. 10.
  6. Zhang D, Karki AB, Young DP, Wang A, Cocke D, Ho TH, Zahnhu Guo. Polymer, 2009, 50, 4189-4198.
  7. Beachley V, Wen X. Prog. Polym. Sci. 2010, 35, 868-892.
  8. Dzenis Y. Mater. Sci. 2004, 304, 1917-1919.
  9. Reneker DH, Chun I. Nanotechnology 1996, 7, 216-223.
  10. Bognitzki M, Frese T, Steinhart M, Greiner A, Wendorff JH, Schaper A, Hellwig M. Frenot A, Chronakis IS. Curr. Opin. Col- loid Interface Sci. 2003, 8, 64-75.
  11. Frenot A, Chronakis IS. Curr. Opin. Colloid Interface Sci. 2003, 8, 64-75.
  12. Jayaraman K, Kotaki M, Zhang Y, Mo X, Ramakrishna S. J. Nanosci. Nanotechnol. 2004, 4, 52-65.
  13. Subbiah T, Bhat GS, Tock RW, Parameswaran S, Ramkumar SS. J. Appl. Polym. Sci. 2005, 96, 557-569.
  14. Dersch R, Steinhart M, Boudriot U, Greiner A, Wendorff JH. Polym. Adv. Technol. 2005, 16, 276-282.
  15. Tan SH, Inai R, Kotaki M, Ramakrishna S. Polymer 2005, 46, 6128-6134.
  16. Nataraj SK, Yang KS, Aminabhavib TM. Prog. Polym. Sci. 2012, 37, 487-513.
  17. He J-H, Wan Y-Q, Yu J-Y. Fibers Polym. 2008, 9, 140-142.
  18. Yordem OS, Papila M, Menceloglu YZ. Mater. Des. 2008, 29, 34-44.
  19. Philip J, Mahendran V, Leona J. J. Nanofluids 2013, 2, 112-119.
  20. Narita T, Knaebel A. Macromolecules 2003, 36, 2985-2989.
  21. Wang Yu, Serrano S, Santiago-aviles JJ. J. Mater. Sci. Lett. 2002, 21, 1055-1057.
  22. Bamdad M, Yeganeh Ghotbi M. Adv. Powder Technol. 2012, 23, 839-844.
  23. Barakat Nasser AM, Abadir MF, Sheikh AF. Chem. Eng. J. 2010, 156, 487-495.
  24. Wu H, Zhang R, Liu X, Lin D, Pan W. Chem. Mater. 2007, 19, 3506-3511.
  25. Cavaliere S, Salles V, Brioude A. J. Nanopart Res. 2010, 12, 2735-2740.
  26. Yu S, Chow GM. Mater. Chem. 2004, 14, 2781-2786.
  27. Chen R-X, Li Y, He J-H. Matéria 2014, 19, 325-344.
  28. He C-H, Li X-W, Liu P, Li Y. Therm. Sci. 2015, 19, 743-746.