Academia.eduAcademia.edu

Electrochemical characterization of silicon nanowires as an anode for lithium batteries

2014, Solid State Ionics

https://doi.org/10.1016/J.APSUSC.2016.07.135

Abstract

In this study it was aimed to enhance cycling performance of silicon lithium ion battery anodes via producing flexible Silicon/Graphene/MWCNT composite structures. The volumetric expansions, which are the primary obstacle that hinders the practical usage of silicon anodes, were tried to suppress using flexible graphene/MWCNT paper substrates. Moreover to achieve lightweight and high electrical conductive anodes, the advantage of graphene was aimed to be exploited. Silicon/graphene/MWCNT flexible composite anodes were produced via radio frequency (RF) magnetron sputtering technique. Graphene/MWCNT papers were produced with vacuum filtration technique as substrate for sputtering process. At coating process of papers constant sputtering power was applied. Phase analysis was conducted with X-ray diffraction (XRD) technique and Raman spectroscopy. Field emission scanning electron microscopy (FESEM). Cyclic voltammetry (CV) tests were carried out to reveal reversible reactions between silicon and lithium. Galvanostatic charge/discharge technique was employed to determine the cyclic performance of anodes. Electrochemical impedance spectroscopy technique was used to understand the relation between cyclic performance and internal resistance of cells. Results showed that improvement on cyclic performance of silicon anodes was achieved with novel composite silicon/graphene/MWCNT composite anode structures.

References (44)

  1. Y.-S. Na, H. Yoo, T.-H. Kim, J. Choi, W.I. Lee, S. Choi, et al., Electrochemical performance of Si-multiwall carbon nanotube nanocomposite anode synthesized by thermal plasma, Thin Solid Films 587 (2014) 14-19, http://dx. doi.org/10.1016/j.tsf.2014.12.038.
  2. J.O. Besenhard, Handbook of Battery Materials, Wiley-VCH, Graz, 1999.
  3. K. Eom, T. Joshi, A. Bordes, I. Do, T.F. Fuller, The design of a Li-ion full cell battery using a nano silicon and nano multi-layer graphene composite anode, J. Power Sources 249 (2014) 118-124, http://dx.doi.org/10.1016/j.jpowsour. 2013.10.087.
  4. Z. Luo, Q. Xiao, G. Lei, Z. Li, C. Tang, Si nanoparticles/graphene composite membrane for high performance silicon anode in lithium ion batteries, Carbon 98 (2016) 373-380, http://dx.doi.org/10.1016/j.carbon.2015.11.031.
  5. R. Marom, S.F. Amalraj, N. Leifer, D. Jacob, D. Aurbach, A review of advanced and practical lithium battery materials, J. Mater. Chem. 21 (2011) 9938, http://dx.doi.org/10.1039/c0jm04225k.
  6. N. Nitta, F. Wu, J.T. Lee, G. Yushin, Li-ion battery materials: present and future, Mater. Today 18 (2015) 252-264, http://dx.doi.org/10.1016/j.mattod.2014.10. 040.
  7. D. Leblanc, P. Hovington, C. Kim, A. Guerfi, D. Bélanger, K. Zaghib, Silicon as anode for high-energy lithium ion batteries: from molten ingot to nanoparticles, J. Power Sources 299 (2015) 529-536, http://dx.doi.org/10. 1016/j.jpowsour.2015.09.040.
  8. S.-H. Baek, J.-S. Park, Y.-M. Jeong, J.H. Kim, Facile synthesis of Ag-coated silicon nanowires as anode materials for high-performance rechargeable lithium battery, J. Alloys Compd. 660 (2016) 387-391, http://dx.doi.org/10. 1016/j.jallcom.2015.11.131.
  9. J.-H. Jeong, K.-H. Kim, D.-W. Jung, K. Kim, S.-M. Lee, E.-S. Oh, High-performance characteristics of silicon inverse opal synthesized by the simple magnesium reduction as anodes for lithium-ion batteries, J. Power Sources 300 (2015) 182-189, http://dx.doi.org/10.1016/j.jpowsour.2015.09. 064.
  10. C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, et al., High-performance lithium battery anodes using silicon nanowires, Nat. Nanotechnol. 3 (2008) 31-35.
  11. M. Park, M.G. Kim, J. Joo, K. Kim, J. Kim, S. Ahn, et al., Silicon nanotube battery anodes, Nano Lett. 9 (2009) 3844-3847, http://dx.doi.org/10.1021/nl902058c.
  12. L. Ji, Z. Lin, M. Alcoutlabi, X. Zhang, Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries, Energy Environ. Sci. 4 (10) (2011) 2682, http://dx.doi.org/10.1039/c0ee00699h.
  13. X. Feng, H. Cui, R. Miao, N. Yan, T. Ding, Z. Xiao, Nano/micro-structured silicon@carbon composite with buffer void as anode material for lithium ion battery, Ceram. Int. 42 (2015) 589-597, http://dx.doi.org/10.1016/j.ceramint. 2015.08.152.
  14. M.L. Terranova, S. Orlanducci, E. Tamburri, V. Guglielmotti, M. Rossi, Si/C hybrid nanostructures for Li-ion anodes: an overview, J. Power Sources 246 (2014) 167-177, http://dx.doi.org/10.1016/j.jpowsour.2013.07.065.
  15. X. Zhou, J. Tang, J. Yang, J. Xie, L. Ma, Silicon@carbon hollow core-shell heterostructures novel anode materials for lithium ion batteries, Electrochim. Acta 87 (2013) 663-668, http://dx.doi.org/10.1016/j.electacta.2012.10.008.
  16. M.S. Wang, L.Z. Fan, Silicon/carbon nanocomposite pyrolyzed from phenolic resin as anode materials for lithium-ion batteries, J. Power Sources 244 (2013) 570-574, http://dx.doi.org/10.1016/j.jpowsour.2013.01.151.
  17. Y. Chen, N. Du, H. Zhang, D. Yang, Facile synthesis of uniform MWCNT@Si nanocomposites as high-performance anode materials for lithium-ion batteries, J. Alloys Compd. 622 (2015) 966-972, http://dx.doi.org/10.1016/j. jallcom.2014.11.032.
  18. L. Yue, H. Zhong, L. Zhang, Enhanced reversible lithium storage in a nano-Si/MWCNT free-standing paper electrode prepared by a simple filtration and post sintering process, Electrochim. Acta 76 (2012) 326-332, http://dx.doi.org/10.1016/j.electacta.2012.05.038.
  19. H. Jiang, X. Zhou, G. Liu, Y. Zhou, H. Ye, Y. Liu, et al., Free-standing Si/graphene paper using Si nanoparticles synthesized by acid-etching Al-Si alloy powder for high-stability Li-ion battery anodes, Electrochim. Acta 188 (2016) 777-784, http://dx.doi.org/10.1016/j.electacta.2015.12.023.
  20. X. Zhou, Y.-X. Yin, L.-J. Wan, Y.-G. Guo, Facile synthesis of silicon nanoparticles inserted into graphene sheets as improved anode materials for lithium-ion batteries, Chem. Commun. 48 (2012) 2198, http://dx.doi.org/10.1039/ c2cc17061b.
  21. Y. Zhang, X.G. Zhang, H.L. Zhang, Z.G. Zhao, F. Li, C. Liu, et al., Composite anode material of silicon/graphite/carbon nanotubes for Li-ion batteries, Electrochim. Acta 51 (2006) 4994-5000, http://dx.doi.org/10.1016/j.electacta. 2006.01.043.
  22. U. Tocoglu, M. Alaf, O. Cevher, M.O. Guler, H. Akbulut, The effect of oxidants on the formation of multi-walled carbon nanotube buckypaper, J. Nanosci. Nanotechnol. 12 (2012) 9169-9174, http://dx.doi.org/10.1166/jnn.2012.6751.
  23. J. Guerrero-Contreras, F. Caballero-Briones, Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method, Mater. Chem. Phys. 153 (2015) 209-220, http://dx.doi.org/10.1016/j. matchemphys.2015.01.005.
  24. L. Zhu, H.J. Peng, J. Liang, J.Q. Huang, C.M. Chen, X. Guo, et al., Interconnected carbon nanotube/graphene nanosphere scaffolds as free-standing paper electrode for high-rate and ultra-stable lithium-sulfur batteries, Nano Energy 11 (2015) 746-755, http://dx.doi.org/10.1016/j.nanoen.2014.11.062.
  25. Y. Liu, X. Cai, W. Shi, Free-standing graphene/carbon nanotubes/CuO aerogel paper anode for lithium ion batteries, Mater. Lett. (2016), http://dx.doi.org/10. 1016/j.matlet.2016.02.068.
  26. S. Chen, W. Yeoh, Q. Liu, G. Wang, Chemical-free synthesis of graphene-carbon nanotube hybrid materials for reversible lithium storage in lithium-ion batteries, Carbon 50 (2012) 4557-4565, http://dx.doi.org/10. 1016/j.carbon.2012.05.040.
  27. R. Epur, M. Ramanathan, F.R. Beck, A. Manivannan, P.N. Kumta, Electrodeposition of amorphous silicon anode for lithium ion batteries, Mater. Sci. Eng. B 177 (2012) 1151-1156, http://dx.doi.org/10.1016/j.mseb.2012.04. 027.
  28. K. Shrestha, V.C. Lopes, A.J. Syllaios, C.L. Littler, Raman spectroscopic investigation of boron doped hydrogenated amorphous silicon thin films, J. Non-Cryst. Solids 403 (2014) 80-83, http://dx.doi.org/10.1016/j.jnoncrysol. 2014.07.013.
  29. S. Park, J. An, J.R. Potts, A. Velamakanni, S. Murali, R.S. Ruoff, Hydrazine-reduction of graphite-and graphene oxide, Carbon 49 (2011) 3019-3023, http://dx.doi.org/10.1016/j.carbon.2011.02.071.
  30. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, et al., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon 45 (2007) 1558-1565, http://dx.doi.org/10. 1016/j.carbon.2007.02.034.
  31. K. Ai, Y. Liu, L. Lu, X. Cheng, L. Huo, A novel strategy for making soluble reduced graphene oxide sheets cheaply by adopting an endogenous reducing agent, J. Mater. Chem. 21 (10) (2011) 3365, http://dx.doi.org/10.1039/ c0jm02865g.
  32. Q. Yang, S.-K. Pang, K.-C. Yung, Electrochemically reduced graphene oxide/carbon nanotubes composites as binder-free supercapacitor electrodes, J. Power Sources 311 (2016) 144-152, http://dx.doi.org/10.1016/j.jpowsour. 2016.02.016.
  33. D. Zhang, T. Yan, L. Shi, Z. Peng, X. Wen, J. Zhang, Enhanced capacitive deionization performance of graphene/carbon nanotube composites, J. Mater. Chem. 22 (2012) 14696, http://dx.doi.org/10.1039/c2jm31393f.
  34. M. Alaf, U. Tocoglu, M. Kartal, H. Akbulut, Graphene supported heterogeneous catalysts for Li-O2 batteries, Appl. Surf. Sci. (2016) 1-8, http://dx.doi.org/10. 1016/j.apsusc.2016.01.207.
  35. L.B. Chen, J.Y. Xie, H.C. Yu, T.H. Wang, An amorphous Si thin film anode with high capacity and long cycling life for lithium ion batteries, J. Appl. Electrochem. 39 (2009) 1157-1162, http://dx.doi.org/10.1007/s10800-008- 9774-1.
  36. U. Tocoglu, O. Cevher, M.O. Guler, H. Akbulut, Coaxial silicon/multi-walled carbon nanotube nanocomposite anodes for long cycle life lithium-ion batteries, Appl. Surf. Sci. 305 (2014) 402-411, http://dx.doi.org/10.1016/j. apsusc.2014.03.101.
  37. J. Wu, X. Qin, C. Miao, Y.-B. He, G. Liang, D. Zhou, et al., A honeycomb-cobweb inspired hierarchical core-shell structure design for electrospun silicon/carbon fibers as lithium-ion battery anodes, Carbon 98 (2015) 582-591, http://dx.doi.org/10.1016/j.carbon.2015.11.048.
  38. H. Yue, S. Wang, Z. Yang, Q. Li, S. Lin, D. He, Ultra-thick porous films of graphene-encapsulated silicon nanoparticles as flexible anodes for lithium ion batteries, Electrochim. Acta 174 (2015) 688-695, http://dx.doi.org/10. 1016/j.electacta.2015.06.042.
  39. V. Chabot, K. Feng, H.W. Park, F.M. Hassan, A.R. Elsayed, A. Yu, et al., Graphene wrapped silicon nanocomposites for enhanced electrochemical performance in lithium ion batteries, Electrochim. Acta 130 (2014) 127-134, http://dx.doi. org/10.1016/j.electacta.2014.02.135.
  40. M. Alaf, D. Gultekin, H. Akbulut, Double phase tinoxide/tin/MWCNT nanocomposite negative electrodes for lithium microbatteries, Microelectron. Eng. 126 (2014) 143-147, http://dx.doi.org/10.1016/j.mee.2014.06.029.
  41. M. Alaf, H. Akbulut, Electrochemical energy storage behavior of Sn/SnO2 double phase nanocomposite anodes produced on the multiwalled carbon nanotube buckypapers for lithium-ion batteries, J. Power Sources 247 (2014) 692-702, http://dx.doi.org/10.1016/j.jpowsour.2013.09.020.
  42. S. Klink, E. Madej, E. Ventosa, A. Lindner, W. Schuhmann, F. La Mantia, The importance of cell geometry for electrochemical impedance spectroscopy in three-electrode lithium ion battery test cells, Electrochem. Commun. 22 (2012) 120-123, http://dx.doi.org/10.1016/j.elecom.2012.06.010.
  43. D. Andre, M. Meiler, K. Steiner, C. Wimmer, T. Soczka-Guth, D.U. Sauer, Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. I. Experimental investigation, J. Power Sources 196 (2011) 5334-5341, http://dx.doi.org/10.1016/j.jpowsour.2010.12.102.
  44. S.S. Zhang, K. Xu, T.R. Jow, The low temperature performance of Li-ion batteries, J. Power Sources 115 (2003) 137-140, http://dx.doi.org/10.1016/ S0378-7753(02)00618-3.