Academia.eduAcademia.edu

ESTCube-1 nanosatellite for electric solar wind sail in-orbit technology demonstration

2014, Proceedings of the Estonian Academy of Sciences

https://doi.org/10.3176/PROC.2014.2S.01

Abstract

This paper presents the mission analysis, requirements, system design, system level test results, as well as mass and power budgets of a 1-unit CubeSat ESTCube-1 built to perform the first in-orbit demonstration of electric solar wind sail (E-sail) technology. The E-sail is a propellantless propulsion system concept that uses thin charged electrostatic tethers for turning the momentum flux of a natural plasma stream, such as the solar wind, into spacecraft propulsion. ESTCube-1 will deploy and charge a 10 m long tether and measure changes in the satellite spin rate. These changes result from the Coulomb drag interaction with the ionospheric plasma that is moving with respect to the satellite due to the orbital motion of the satellite. The following subsystems have been developed to perform and to support the E-sail experiment: a tether deployment subsystem based on a piezoelectric motor; an attitude determination and control subsystem to provide the centrifugal force for tether deployment, which uses electromagnetic coils to spin up the satellite to one revolution per second with controlled spin axis alignment; an imaging subsystem to verify tether deployment, which is based on a 640 × 480 pixel resolution digital image sensor; an electron gun to keep the tether at a high positive potential; a high voltage source to charge the tether; a command and data handling subsystem; and an electrical power subsystem with high levels of redundancy and fault tolerance to mitigate the risk of mission failure.

References (30)

  1. Johnson, L., Young, R., Barnes, N., Friedman, L., Lappas, V., and McInnes, C. Solar sails: technology and demonstration status. Int'l J. Aeronaut. Space Sci., 2012, 13(4), 421-427.
  2. Ansdell, M., Ehrenfreund, P., and McKay, C. Step- ping stones toward global space exploration. Acta Astronaut., 2011, 68(11-12), 2098-2113.
  3. Macdonald, M. and McInnes, C. Solar sail science mission applications and advancement. Adv. Space Res., 2011, 48, 1702-1716.
  4. Zubrin, R. M. and Andrews, D. G. Magnetic sails and interplanetary travel. J. Spacecr. Rockets, 1991, 28, 197-203.
  5. Janhunen, P. Electric sail for spacecraft propulsion. J. Propul. Power, 2004, 20, 763-764.
  6. Janhunen, P. and Sandroos, A. Simulation study of solar wind push on a charged wire: basis of solar wind electric sail propulsion. Ann. Geophys., 2007, 25, 755-767.
  7. Janhunen, P. Increased electric sail thrust through removal of trapped shielding electrons by orbit chaotisation due to spacecraft body. Ann. Geophys., 2009, 27, 3089-3100.
  8. Janhunen, P., Toivanen, P. K., Polkko, J., Merikallio, S., Salminen, P., Haeggström, E. et al. Electric solar wind sail: toward test missions. Rev. Sci. Instrum., 2010, 81, 111301:1-11.
  9. Janhunen, P., Toivanen, P., Envall, J., Merikallio, S., Montesanti, G., del Amo, J. G. et al. Overview of electric solar wind sail applications. Proc. Estonian Acad. Sci., 2014, 63(2S), 267-278.
  10. Seppänen, H., Kiprich, S., Kurppa, R., Janhunen, P., and Haeggström, E. Wire-to-wire bonding of µm-diameter aluminum wires for the Electric Solar Wind Sail. Microelectron. Eng., 2011, 88, 3267-3269.
  11. Seppänen, H., Rauhala, T., Kiprich, S., Ukkonen, J., Simonsson, M., Kurppa, R. et al. One kilometer (1 km) electric solar wind sail tether produced auto- matically. Rev. Sci. Instrum., 2013, 84, 095102:1-4.
  12. Envall, J., Janhunen, P., Toivanen, P., Pajusalu, M., Ilbis, E., Kalde, J. et al. E-sail test payload of the ESTCube-1 nanosatellite. Proc. Estonian Acad. Sci., 2014, 63(2S), 210-221.
  13. Slavinskis, A., Kvell, U., Kulu, E., Sünter, I., Kuuste, H., Lätt, S. et al. High spin rate magnetic controller for nanosatellites. Acta Astronaut., 2014, 95, 218-226.
  14. Slavinskis, A., Kulu, E., Viru, J., Valner, R., Ehrpais, H., Uiboupin, T. et al. Attitude determination and control for centrifugal tether deployment on the ESTCube-1 nanosatellite. Proc. Estonian Acad. Sci., 2014, 63(2S), 242-249.
  15. Kuuste, H., Eenmäe, T., Allik, V., Agu, A., Vendt, R., Ansko, I. et al. Imaging system for nanosatellite proximity operations. Proc. Estonian Acad. Sci., 2014, 63(2S), 250-257.
  16. CubeSat Design Specification Rev. 12. The CubeSat Program, Cal Poly SLO, California, 2009.
  17. Laizans, K., Sünter, I., Zalite, K., Kuuste, H., Valgur, M., Tarbe, K. et al. Design of the fault tolerant command and data handling subsystem for ESTCube-1. Proc. Estonian Acad. Sci., 2014, 63(2S), 222-231.
  18. Pajusalu, M., Rantsus, R., Pelakauskas, M., Leitu, A., Ilbis, E., Kalde, J. et al. Design of the Electrical Power System for the ESTCube-1 satellite. Latv. J. Phys. Tech. Sci., 2012, 49(3), 16-24.
  19. Pajusalu, M., Ilbis, E., Ilves, T., Veske, M., Kalde, J., Lillmaa, H. et al. Design and pre-flight testing of the electrical power system for the ESTCube-1 nanosatellite. Proc. Estonian Acad. Sci., 2014, 63(2S), 232-241.
  20. Janhunen, P. Electrostatic plasma brake for deorbiting a satellite. J. Propul. Power, 2010, 26, 370-372.
  21. Kvell, U., Cara, D. D., Janhunen, P., Noorma, M., and del Amo, J. G. Deorbiting strategies: comparison bet- ween electrostatic plasma brake and conventional pro- pulsion. In Joint Propulsion Conferences. 2011, 1-9.
  22. Khurshid, O., Tikka, T., Praks, J., and Hallikainen, M. Accommodating the plasma brake experiment on- board the Aalto-1 satellite. Proc. Estonian Acad. Sci., 2014, 63(2S), 258-266.
  23. ISIS. ISIPOD CubeSat Deployer Product Specification.
  24. Stras, L., Kekez, D. D., Wells, G. J., Jeans, T., Zee, R. E., Pranajaya, F. et al. The design and opera- tion of the Canadian Advanced Nanospace eXperi- ment (CanX-1). In Proceedings of the AMSAT-NA 21st Space Symposium. 2003, 150-160.
  25. Díaz-Michelena, M. Small magnetic sensors for space applications. Sensors, 2009, 9, 2271-2288.
  26. Avery, K., Fenchel, J., Mee, J., Kemp, W., Netzer, R., Elkins, D. et al. Total dose test results for CubeSat electronics. In IEEE Radiation Effects Data Workshop. 2011.
  27. Pajusalu, M., Ilbis, E., Kalde, J., Lillmaa, H., Reinu- mägi, R., Rantsus, R. et al. Electrical power system for ESTCube-1: a fault-tolerant COTS solution. In 63rd International Astronautical Congress. Naples, 2012, 7139-7144.
  28. Arianespace. Vega User's Manual. Issue 3/Revision 0. 2006.
  29. Jonsson, M. Development of a Shock Test Facility for Qualification of Space Equipment. Master thesis. Chalmers University of Technology, 2012.
  30. Nanosatelliit ESTCube-1 elektrilise päikesepurje tehnoloogia näitamiseks orbiidil Silver Lätt, Andris Slavinskis, Erik Ilbis, Urmas Kvell, Kaupo Voormansik, Erik Kulu, Mihkel Pajusalu, Henri Kuuste, Indrek Sünter, Tõnis Eenmäe, Kaspars Laizans, Karlis Zalite, Riho Vendt, Johannes Piepenbrock, Ilmar Ansko, Ahto Leitu, Andres Vahter, Ants Agu, Elo Eilonen, Endel Soolo, Hendrik Ehrpais, Henri Lillmaa, Ivar Mahhonin, Jaak Mõttus, Jaan Viru, Jaanus Kalde, Jana Šubitidze, Jānis Mucenieks, Jānis Šate, Johan Kütt, Juris Pol ¸evskis, Jürgen Laks, Kadi Kivistik, Kadri-Liis Kusmin, Kalle-Gustav Kruus, Karl Tarbe, Katrin Tuude, Katrīna Kalnin ¸a, Laur Joost, Marko Lõoke, Markus Järve, Mart Vellak, Martin Neerot, Martin Valgur, Martynas Pelakauskas, Matis Averin, Mats Mikkor, Mihkel Veske, Ott Scheler, Paul Liias, Priit Laes, Ramon Rantsus, Reimo Soosaar, Risto Reinumägi, Robert Valner, Siim Kurvits, Sven-Erik Mändmaa, Taavi Ilves, Tanel Peet, Tavo Ani, Teet Tilk, Timothy Henry Charles Tamm, Tobias Scheffler, Toomas Vahter, Tõnis Uiboupin, Veigo Evard, Andreas Sisask, Lauri Kimmel, Olaf Krömer, Roland Rosta, Pekka Janhunen, Jouni Envall, Petri Toivanen, Timo Rauhala, Henri Seppänen, Jukka Ukkonen, Edward Haeggström, Risto Kurppa, Taneli Kalvas, Olli Tarvainen, Janne Kauppinen, Antti Nuottajärvi, Hannu Koivisto, Sergiy Kiprich, Alexander Obraztsov, Viljo Allik, Anu Reinart ja Mart Noorma On antud ülevaade 1-ühikulise kuupsatelliidi ESTCube-1 missiooni analüüsist, nõuetest, satelliidi ehitusest, testimisest ja massi ning voolutarbe jaotusest. Satelliidi eesmärk on näidata elektrilise päikesepurje tehnoloogiat madalal Maa orbiidil. Elektriline päikesepuri on kütusevaba tõukejõusüsteem, mis kasutab pikki peenikesi elektrostaatiliselt laetud metallkiude, mille abil muudetakse loodusliku plasma -näiteks päikesetuule -liikumisimpulss kosmoselaeva kiirenduseks. Pöörlema pandud ESTCube-1 kerib tsentrifugaaljõu abil välja 10 meetri pikkuse traadi, millele antakse elektrostaatiline laeng. Seejärel mõõdetakse satelliidi pöörlemiskiiruse muutust, mis tuleneb satelliidi orbitaalliikumisel tekkivast Coulombi vastastikmõjust laetud traadi ja ionosfääri plasma vahel. Traadi väljakerimist juhitakse spetsiaalselt selleks ehitatud piesoelektrilisel mootoril põhineva süsteemiga. Traadi väljakerimiseks vajaliku tsentrifugaaljõu ja pöörlemistelje stabiilsuse tagamiseks arendati välja satelliidi asendi määramise ning juhtimise alamsüsteem. Vajaliku pöörlemiskiiruse -1 pööre sekundis -saavutamiseks ja satelliidi asendi kontrol- limiseks kasutatakse elektromagnetmähiseid. Kinnitus traadi eduka väljakerimise kohta saadakse kaamerast, mis pildistab traadi otsamassi. Kaamera põhineb 640 × 480 pikslise lahutusvõimega digitaalsel pildisensoril. Traadi elektrostaatiliseks laadimiseks on välja töötatud elektronkahur ja kõrgepingeallikas. Missiooni riskide vähendami- seks on satelliidi käsu-ja andmehaldussüsteemi ning elektrienergia alamsüsteemi arendamisel pandud suurt rõhku veakindlusele.