Academia.eduAcademia.edu

Flexible relaxor materials: Ba2PrxNd1−xFeNb4O15tetragonal tungsten bronze solid solution

2009, Journal of Physics: Condensed Matter

https://doi.org/10.1088/0953-8984/21/45/452201

Abstract

Relaxors are very interesting materials but they are most of the time restricted to perovskite materials and thus their flexibility is limited. We have previously shown that tetragonal tungsten bronze (TTB) niobates Ba 2 PrFeNb 4 O 15 was a relaxor below 170K and that Ba 2 NdFeNb 4 O 15 displays a ferroelectric behavior with a T C =323K. On scanning the whole solid solution Ba 2 Pr x Nd 1-x FeNb 4 O 15 (x= 0, 0.2, 0.4, 0.5, 0.6, 0.8, 1), we demonstrate here a continuous cross over between these end member behaviors with a coexistence of ferroelectricity and relaxor in the intermediate range. This tuneability is ascribed to the peculiar structure of the TTB networks which is more open than the classical perovskites. This allows for the coexistence of long range and short range orders and thus opens the range of relaxor materials. Because of their useful dielectric and piezoelectric properties, relaxors are under deep investigations nowadays. 1, 2, 3

References (25)

  1. W. Ma and L.E. Cross, Appl. Phys. Lett. 78, 2920 (2001)
  2. A.A. Bokov and Z.-G. Ye, J. Mater. Sci. 41, 31 (2006)
  3. D. Damjanovic, M. Budimir, M. Davis and N. Setter J. Mater. Sci. 41, 65 (2006)
  4. A. Simon, J. Ravez and M. Maglione, J. Phys.: Cond. Matter 16, 963 (2004)
  5. J. Ravez, C. Broustéra and A. Simon, J. Mater. Chem 9, 1609 (1999)
  6. J. Kreisel, A. M. Glazer, P. Bouvier and G. Lucazeau, Phys. Rev. B 63, 174106 (2001)
  7. J.R. Gomah-Pettry, S. Saïd, P. Marchet and J.P. Mercurio, J. Eur. Ceram. Soc. 24, 1165
  8. A. Simon, J. Ravez and M. Maglione, Sol. Sta. Sci. 7, 925 (2005)
  9. A. Magneli, Arkiv. Kemi. 24, 213 (1949)
  10. M. Pouchard, J.-P. Chaminade, A. Perron, J. Ravez and P. Hagenmuller, J. Sol. Sta. Chem. 14, 274 (1975)
  11. P.H. Fang and R.S. Roth, J. Appl. Phys. 31, 143 (1960)
  12. E. Castel, M. Josse, F. Roulland, D. Michau, L. Raison and M. Maglione, J. Magn. Magn. Mater., 321-11, 1773 (2009)
  13. C. Perrin, N. Menguy, O. Bidault, C. Y. Zahra, A.-M. Zahra, C. Caranoni, B. Hilczer and A. Stepanov, J. Phys.: Cond. Matter 13, 10231 (2001)
  14. G. A. Samara and L. A. Boatner, Phys. Rev. B 61, 3889 (2000)
  15. M. Josse, O. Bidault, F. Roulland, E. Castel, A. Simon, D. Michau, R. Von der Mühll, O. Nguyen and M. Maglione, Sol. Sta. Sci., 11, 1118 (2009)
  16. D. Viehland, S. J. Jang, L. E. Cross, and M. Wuttig, J. Appl. Phys. 68, 2916 (1990)
  17. H. Vogel, Phys. Z. 22, 645(1921)
  18. G. S. Fulcher, J. Am. Ceram. Soc. 8, 339 (1925)
  19. F. Jona and G. Shirane, Ferroelectric Crystals (MacMillan, New York, 1962), pp. 152-253
  20. G. Burns and B.A. Scott, Phys. Rev. B 38, 597 (1988)
  21. R. Comes, M. Lambert and A. Guinier, Sol. Sta. Comm. 6, 715 (1968)
  22. A. M. Quittet and M. Lambert, J. Phys. Col. 33, C2-141 (1972)
  23. R. Yu and H. Krakauer, Phys. Rev. Lett. 74, 4067 (1995)
  24. W. Cochran, Adv. Phys. 10, 401 (1961)
  25. J.F. Scott, Phys. Rev. B 4, 1360 (1970)