Academia.eduAcademia.edu

GPS data on tourists: a spatial analysis on road networks

AStA Advances in Statistical Analysis

https://doi.org/10.1007/S10182-023-00484-W

Abstract

This paper proposes a spatial point process model on a linear network to analyse cruise passengers’ stop activities. It identifies and models tourists’ stop intensity at the destination as a function of their main determinants. For this purpose, we consider data collected on cruise passengers through the integration of traditional questionnaire-based survey methods and GPS tracking data in two cities, namely Palermo (Italy) and Dubrovnik (Croatia). Firstly, the density-based spatial clustering of applications with noise algorithm is applied to identify stop locations from GPS tracking data. The influence of individual-related variables and itinerary-related characteristics is considered within a framework of a Gibbs point process model. The proposed model describes spatial stop intensity at the destination, accounting for the geometry of the underlying road network, individual-related variables, contextual-level information, and the spatial interaction amongst stop points. The analy...

References (64)

  1. Abbruzzo, A., Ferrante, M., De Cantis, S.: A pre-processing and network analysis of GPS tracking data. Spat. Econ. Anal. 16(2), 217-240 (2021)
  2. Adongo, C.A., Badu-Baiden, F., Boakye, K.A.A.: The tourism experience-led length of stay hypothesis. J. Outdoor Recreat. Tour. 18, 65-74 (2017)
  3. Ang, Q.W., Baddeley, A., Nair, G.: Geometrically corrected second order analysis of events on a linear network, with applications to ecology and criminology. Scand. J. Stat. 39(4), 591-617 (2012)
  4. Atluri, G., Karpatne, A., Kumar, V.: Spatio-temporal data mining: A survey of problems and methods. ACM Comput. Surv. (CSUR) 51(4), 1-41 (2018)
  5. Baddeley, A., Chang, Y.-M., Song, Y., Turner, R.: Nonparametric estimation of the dependence of a spa- tial point process on spatial covariates. Stat. Interface 5(2), 221-236 (2012)
  6. Baddeley, A., Nair, G., Rakshit, S., McSwiggan, G., Davies, T.M.: Analysing point patterns on networks- a review. Spat. Stat. 42, 100435 (2021)
  7. Baddeley, A., Rubak, E., Turner, R.: Spatial Point Patterns: Methodology and Applications with R. Chap- man and Hall, Boca Raton (2015)
  8. Baddeley, A., Turner, R.: Practical maximum pseudolikelihood for spatial point patterns: (with discus- sion). Aust. N. Z. J. Stat. 42(3), 283-322 (2000)
  9. Birant, D., Kut, A.: ST-DBSCAN: An algorithm for clustering spatial-temporal data. Data Knowl. Eng. 60(1), 208-221 (2007)
  10. Brida, J.G., Zapata, S.: Economic impacts of cruise tourism: The case of Costa Rica. Anatolia 21(2), 322-338 (2010)
  11. Casado-Díaz, A.B., Navarro-Ruiz, S., Nicolau, J.L., Ivars-Baidal, J.: Expanding our understanding of cruise visitors' expenditure at destinations: The role of spatial patterns, onshore visit choice and cruise category. Tour. Manag. 83, 104199 (2021)
  12. Chiou, Y.-C., Hsieh, C.-W.: Determinants of tourists' length of stay at various tourist attractions based on cellular data. Transportmetrica A: Transp. Sci. 16(3), 716-733 (2020)
  13. Cooper, C.: Spatial and temporal patterns of tourist behaviour. Reg. Stud. 15(5), 359-371 (1981) Cressie, N.: Statistics for Spatial Data. John Wiley & Sons, Hoboken (2015)
  14. Daley, D.J., Vere-Jones, D.: An Introduction to the Theory of Point Processes. Volume II: General The- ory and Structure, 2nd edn. Springer-Verlag, New York (2007)
  15. D'Angelo, N., Adelfio, Giada, amd Abbruzzo, A., and Ferrante, M.: Identification and modeling of stop activities at the destination from GPS tracking data. In: Book of short papers -SIS 2021, pp. 811- 816 (2021)
  16. D'Angelo, N., Adelfio, G., Abbruzzo, A., Mateu, J.: Inhomogeneous spatio-temporal point processes on linear networks for visitors' stops data. Ann. Appl. Stat. 16(2), 791-815 (2022)
  17. D'Angelo, N., Adelfio, G., Mateu, J.: Assessing local differences between the spatio-temporal second- order structure of two point patterns occurring on the same linear network. Spat. Stat. 45, 100534 (2021)
  18. D'Angelo, N., Adelfio, G., Mateu, J.: Local inhomogeneous second-order characteristics for spatio- temporal point processes occurring on linear networks. Stat. Pap. (2022). https:// doi. org/ 10. 1007/ s00362-022-01338-4
  19. D'Angelo, N., Payares, D., Adelfio, G., Mateu, J.: Self-exciting point process modelling of crimes on lin- ear networks. Stat. Model. (2022). https:// doi. org/ 10. 1177/ 14710 82X22 10941 46
  20. De Cantis, S., Ferrante, M., Kahani, A., Shoval, N.: Cruise passengers' behavior at the destination: Inves- tigation using GPS technology. Tour. Manag. 52, 133-150 (2016)
  21. Domènech, A., Gutiérrez, A., Anton Clavé, S.: Cruise passengers' spatial behaviour and expenditure lev- els at destination. Tour. Plan. Dev. 17(1), 17-36 (2020)
  22. Domènech, A., Gutiérrez, A., Clavé, S.A.: Built environment and urban cruise tourists' mobility. Ann. Tour. Res. 81, 102-189 (2020)
  23. East, D., Osborne, P., Kemp, S., Woodfine, T.: Combining GPS & survey data improves understanding of visitor behaviour. Tour. Manag. 61, 307-320 (2017)
  24. Ester, M., Kriegel, H.-P., Jorg, S., and Xu, X.: A density-based clustering algorithms for discovering clus- ters. In: KDD-96 Proceedings, vol. 2, pp. 226-231 (1996)
  25. Ferrante, M., De Cantis, S., Shoval, N.: A general framework for collecting and analysing the tracking data of cruise passengers at the destination. Curr. Issue Tour. 21(12), 1426-1451 (2018)
  26. Gong, L., Sato, H., Yamamoto, T., Miwa, T., Morikawa, T.: Identification of activity stop locations in GPS trajectories by density-based clustering method combined with support vector machines. J. Mod. Transport. 23(3), 202-213 (2015)
  27. Grinberger, A.Y., Shoval, N.: Spatiotemporal contingencies in tourists' intradiurnal mobility patterns. J. Travel Res. 58(3), 512-530 (2019)
  28. Hu, F., Li, Z., Yang, C., Jiang, Y.: A graph-based approach to detecting tourist movement patterns using social media data. Cartogr. Geogr. Inf. Sci. 46(4), 368-382 (2019)
  29. Illian, J.B., Hendrichsen, D.K.: Gibbs point process models with mixed effects. Environ.: off. J. Int. Envi- ron. Soc. 21(3-4), 341-353 (2010)
  30. Kallenberg, O.: An informal guide to the theory of conditioning in point processes. Int. Stat. Rev. 52(2), 151-164 (1984)
  31. Kriwoken, L., Hardy, A.: Neo-tribes and antarctic expedition cruise ship tourists. Ann. Leis. Res. 21(2), 161-177 (2018)
  32. Kurashima, T., Iwata, T., Irie, G., and Fujimura, K.: Travel route recommendation using geotags in photo sharing sites. In: Proceedings of the 19th ACM international conference on Information and knowl- edge management, pp. 579-588 (2010)
  33. Larsen, S., Wolff, K., Marnburg, E., Øgaard, T.: Belly full, purse closed: Cruise line passengers' expendi- tures. Tour. Manag. Perspect. 6, 142-148 (2013)
  34. Lew, A.A., McKercher, B.: Trip destinations, gateways and itineraries: The example of Hong Kong. Tour. Manag. 23(6), 609-621 (2002)
  35. Li, Y., Yang, L., Shen, H., Wu, Z.: Modeling intra-destination travel behavior of tourists through spatio- temporal analysis. J. Destination Mark. Manag. 11, 260-269 (2019)
  36. Liu, B., Huang, S.S., Fu, H.: An application of network analysis on tourist attractions: The case of Xinji- ang, china. Tour. Manag. 58, 132-141 (2017)
  37. Mateu, J., Moradi, M., Cronie, O.: Spatio-temporal point patterns on linear networks: Pseudo-separable intensity estimation. Spat. Stat. 37, 100400 (2020)
  38. McKercher, B., Zoltan, J.: Tourist flows and spatial behavior. In: Lew, A.A., Hall, M.C., Williams, A.M. (eds.) The Wiley Blackwell Companion to Tourism, pp. 33-44. Wiley, Malden (2014)
  39. McSwiggan, G., Baddeley, A., Nair, G.: Kernel density estimation on a linear network. Scand. J. Stat. 44(2), 324-345 (2017)
  40. Meekan, M.G., Duarte, C.M., Fernández-Gracia, J., Thums, M., Sequeira, A.M., Harcourt, R., Eguíluz, V.M.: The ecology of human mobility. Trends Ecol. Evol. 32(3), 198-210 (2017)
  41. Moradi, M.M., Cronie, O., Rubak, E., Lachieze-Rey, R., Mateu, J., Baddeley, A.: Resample-smoothing of Voronoi intensity estimators. Stat. Comput. 29(5), 995-1010 (2019)
  42. Moradi, M.M., Mateu, J.: First-and second-order characteristics of spatio-temporal point processes on linear networks. J. Comput. Graph. Stat. 29(3), 432-443 (2020)
  43. Moradi, M.M., Pebesma, E., Mateu, J.: trajectories: Classes and methods for trajectory data. J. Stat. Softw. Retrieved from (2018a) https:// cran.r-proje ct. org/ web/ packa ges/ traje ctori es/ vigne ttes/ artic le. pdf Moradi, M.M., Rodríguez-Cortés, F.J., Mateu, J.: On kernel-based intensity estimation of spatial point patterns on linear networks. J. Comput. Graph. Stat. 27(2), 302-311 (2018)
  44. Navarro-Ruiz, S., Casado-Díaz, A.B., Ivars-Baidal, J.: Modelling the intra-destination behaviour of cruise visitors based on a three-dimensional approach. J. Destination Mark. Manag. 18, 100470 (2020)
  45. Okabe, A., Sugihara, K.: Spatial Analysis Along Networks: Statistical and Computational Methods. John Wiley & Sons, Hoboken (2012)
  46. Parola, F., Satta, G., Penco, L., Persico, L.: Destination satisfaction and cruiser behaviour: The moderat- ing effect of excursion package. Res. Transp. Bus. Manag. 13, 53-64 (2014)
  47. Petry, L.M., Ferrero, C.A., Alvares, L.O., Renso, C., Bogorny, V.: Towards semantic-aware multiple- aspect trajectory similarity measuring. Trans. GIS 23(5), 960-975 (2019)
  48. Puczkó, L., Bárd, E., and Füzi, J.: Methodological triangulation: the study of visitor behaviour at the hungarian open air museum. In: Cultural tourism research methods, pp. 61-74. CABI Wallingford UK (2010)
  49. R Core Team.: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2023)
  50. Rakshit, S., Baddeley, A., Nair, G.: Efficient code for second order analysis of events on a linear network. J. Stat. Softw. 90(1), 1-37 (2019)
  51. Rakshit, S., Nair, G., Baddeley, A.: Second-order analysis of point patterns on a network using any dis- tance metric. Spat. Stat. 22, 129-154 (2017)
  52. Russo, A.P.: The "vicious circle" of tourism development in heritage cities. Ann. Tour. Res. 29(1), 165- 182 (2002)
  53. Shoval, N., Kahani, A., De Cantis, S., Ferrante, M.: Impact of incentives on tourist activity in space-time. Ann. Tour. Res. 80, 102846 (2020)
  54. Shoval, N., McKercher, B., Birenboim, A., Ng, E.: The application of a sequence alignment method to the creation of typologies of tourist activity in time and space. Environ. Plann. B. Plann. Des. 42(1), 76-94 (2015)
  55. Smallwood, C.B., Beckley, L.E., Moore, S.A.: An analysis of visitor movement patterns using travel net- works in a large marine park, north-western Australia. Tour. Manag. 33(3), 517-528 (2012)
  56. Stopher, P.: Collecting, Managing, and Assessing Data Using Sample Surveys. Cambridge University Press, Cambridge (2012)
  57. Thrane, C.: Analyzing tourists' length of stay at destinations with survival models: A constructive cri- tique based on a case study. Tour. Manag. 33(1), 126-132 (2012)
  58. Thrane, C., Farstad, E.: Nationality as a segmentation criterion in tourism research: The case of interna- tional tourists' expenditures while on trips in Norway. Tour. Econ. 18(1), 203-217 (2012)
  59. Van Lieshout, M.: Markov point processes and their applications. World Scientific, Singapore (2000)
  60. Wang, D.: Tourist behaviour and repeat visitation to Hong Kong. Tour. Geogr. 6(1), 99-118 (2004)
  61. Wood, S.: Generalized Additive Models: An Introduction with R, 2nd edn. Chapman and Hall, Boca Raton (2017)
  62. Yang, L., Wu, L., Liu, Y., Kang, C.: Quantifying tourist behavior patterns by travel motifs and geo-tagged photos from Flickr. ISPRS Int. J. Geo Inf. 6(11), 345 (2017)
  63. Zheng, W., Zhou, R., Zhang, Z., Zhong, Y., Wang, S., Wei, Z., Ji, H.: Understanding the tourist mobility using GPS: How similar are the tourists? Tour. Manag. 71, 54-66 (2019)
  64. Zoltan, J., McKercher, B.: Analysing intra-destination movements and activity participation of tourists through destination card consumption. Tour. Geogr. 17(1), 19-35 (2015)