Academia.eduAcademia.edu

Abstract

International Fracture Mechanics Summer Schools have been held from 1980 and have attracted a large number of well-known specialists and participants. Monographs published after every school have been the most effective references in fracture mechanics application for scientists and engineers in former Yugoslavia and Serbia and Montenegro. Previous schools have covered: 1. Introduction to Fracture Mechanics and Fracture-Safe Design (1980) 2. Modern Aspects of Design and Construction of Pressure Vessels and Penstocks (1982) 3. Fracture Mechanics of Weldments (1984) 4. Prospective of Fracture Mechanics Development and Application (1986) 5. The Application of Fracture Mechanics to Life Estimation of Power Plant Components (1989) 6.

Key takeaways
sparkles

AI

  1. Fracture mechanics provides critical insights into the integrity of materials and structures under stress.
  2. Neutron irradiation significantly embrittles reactor pressure vessel (RPV) materials, increasing transition temperatures and decreasing toughness.
  3. Stress corrosion cracking (SCC) and corrosion fatigue are major failure mechanisms influenced by environmental and mechanical factors.
  4. Fracture mechanics standards, such as ASTM E399, guide the assessment of material toughness and crack behavior.
  5. The SINTAP procedure offers a systematic approach for flaw assessment in engineering materials, enhancing safety and reliability.

References (390)

  1. Kanninen, M.F., Advanced fracture mechanics, Oxford Engineering Science Series, Oxford University Press. (1985)
  2. Griffith, A.A, The Phenomena of Rupture and Flow in Solids, Philosophical Transactions of the Royal Society of London, A221, pp. 163-197, (1921); and The Theory of Rupture, Pro- ceedings of the First International Conference of Applied Mechanics, Delft. (1924)
  3. Griffith, A.A, The Theory of Rupture, Proceedings of the First International Conference of Applied Mechanics, Delft, pp. 55-63, Biezeno and Burgers ed. Waltman. (1925)
  4. Inglis, C.E., Stresses in a Plate Due to the Presence of Cracks and Sharp Corners, Transac- tions of the Institute of Naval Architects, 55, pp. 219-241. (1913)
  5. Bueckner, H.F., The Propagation of Cracks and the Energy of Elastic Deformation, Transac- tions of the American Society of Mechanical Engineers, 80, pp. 1225-1230. (1958)
  6. Erdogan, F., Stress Intensity Factors, Journal of Applied Mechanics, 50, pp. 992-1002. (1983)
  7. Sneddon, I.N., The Distribution of Stress in the Neighborhood of a Crack in an Elastic Solid, Proceedings of the Royal Society of London, A187, pp. 229-260. (1946)
  8. Westergaard, H.M., Bearing Pressures and Cracks, Transactions of the American Society of Mechanical Engineers, 61, pp. A49-A53. (1939)
  9. Irwin, G.R., Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate, Jour- nal of Applied Mechanics, 24, pp. 361-364. (1957)
  10. Sih, G.C., Paris, P.C., and Erdogan, F., Crack Tip Stress-Intensity Factors for Plane Extension and Plate Bending Problems, Journal of Applied Mechanics, 29, pp. 306-312. (1962)
  11. Sih, G.C., Paris, P.C., and Irwin, G.R., On Cracks in Rectilinearly Anisotropic Bodies, Interna- tional Journal of Fracture Mechanics, 1, pp. 189-203. (1965)
  12. Elliott, H.A., An Analysis of the Conditions for Rupture Due to Griffith Cracks, Proceedings of the Physical Society, 59, pp. 208-223. (1947)
  13. Cribb, J.L., and Tomkins, B., On the Nature of the Stress at the Tip of a Perfectly Brittle Crack, Journal of the Mechanics and Physics of Solid, 15, pp. 135-140. (1967)
  14. Goodier, J.N., Mathematical Theory of Equilibrium Cracks, Fracture, H. Liebowitz (ed.), Vol. II, Academic, New York, pp. 1-66. (1968)
  15. Rice, J.R., A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks, Journal of Applied Mechanics, 35, pp. 379-386. (1968)
  16. Gehlen, P.C., and Kanninen, M.F., An Atomic Model for Cleavage Crack Propagation in Alpha Iron, Inelastic Behavior of Solids, M.F. Kanninen et al.(ed.), McGraw-Hill, New York, pp. 587-603. (1970)
  17. Weiner, J.H., and Pear, M., Crack and Dislocation Propagation in an Idealized Crystal Model, Journal of Applied Physics, 46, pp. 2398-2405. (1975)
  18. Ashurst, W.T., and Hoover, W.G., Microscopic Fracture Studies in the Two-dimensional Triangular Lattice, Physical Review B, 14, pp. 1465-1473. (1976)
  19. Markworth, J.A., Kahn, L.R., Gehlen, P.C., and Hahn, G.T., Atomistic Computer Simulation of Effects of Hydrogen and Helium on Crack Propagation in BCC Iron, Res. Mechanica, 2, pp. 141-162. (1981)
  20. Irwin, G.R, Kies, J.A., and Smith, H.L., Fracture strengths relative to onset and arrest of crack propagation, Proceed. of the American Society for Testing Materials, 58, pp. 640-657. (1958)
  21. Wells, A.A., Applications of fracture mechanics at and beyond general yielding, British Weld- ing Journal, 10, pp. 563-570. (1963)
  22. Dugdale, D.S., Yielding of steel sheets containing slits, Journal of the Mechanics and Physics of Solids, 8, pp. 100-108. (1960)
  23. Muskhelisvili, N.I., Some Basic Problems in the Mathematical Theory of Elasticity, Nordhoff, the Netherlands. (1954)
  24. Barenblatt, G.I., The Mathematical Theory of Equilibrium of Crack in Brittle Fracture, Advan- ces in Applied Mechanics, 7, pp. 55-129. (1962)
  25. Eshelby, J.D., The Continuum Theory of Lattice Defects, Solid State Physics, Vol.3, Academic Press. (1956)
  26. Rice, J.R., The Mechanics of Crack Tip Deformation and Extension by Fatigue, Fatigue Crack Growth, ASTM Spec. Tech. Publ., p.415. (1967)
  27. Williams, M.L., On the Stress Distribution at the Base of a Stationary Crack, Journal of Applied Mechanics, Vol. 24, No.1, Trans. ASME, Vol. 79, Mar. 1957, pp. 109-114.
  28. Irwin, G.R., Fracture Mechanics, Structural Mechanics (Proceeding of first Naval Sympo- sium), Pergamon Press. (1960)
  29. Rice, J.R., Mathematical Analysis in the Mechanics of Fracture, Treatise on Fracture, Vol.2, ed. Liebowitz, H., Academic Press.
  30. Hutchinson, J.W., Fundamentals of the Phenomenological Theory of Nonlinear Fracture Mechanics, Journal of Applied Mechanics, 50, pp. 1042-1051. (1983)
  31. Sanders, J.L., On the Griffith -Irwin Fracture Theory, Journal of Applied Mechanics, Vol.27, No.2, Trans. ASME, Vol. 82, Series E, June 1960, pp. 352-352.
  32. Thomas, A.G., Rupture of Rubber, II, The Strain Concentration at an Incision, Journal of Polymer Science, Vol. 18. (1955)
  33. Rice, J.R., Drucker, D.C., Energy Changes in Stressed Bodies Due to Void and Crack Growth, International Journal of Fracture Mechanics, Vol.3, No.1. (1967)
  34. Bowie, O.L., Neal, D.M., The Effective Crack Length of an Edge Notch in a Semi-Infinite Sheet Under Tension, International Journal of Fracture Mechanics.
  35. Rice, J.R., Stresses Due to a Sharp Notch in a Work-Hardening Elastic-Plastic Material Load- ed by Longitudinal Shear, Journal of Applied Mechanics, Vol.34, No.2, Trans. ASME, Vol. 89, Series E, June 1967, pp. 287-298.
  36. Kachanov, L. M., Time of the Rupture Process under Creep Conditions, T.V.Z. Akad. Nauk., SSR, Otd. Tech. Nauk, 9, 26-31. (1958)
  37. Krajčinović, D., Lubarda, A.V., Šumarac, D., Fundamental Aspects of Brittle Cooperative Phenomena-Effective Continua Models, Mechanics of Materials, 15, 99-115. (1993)
  38. Rice, J.R., Thermodynamics of the quasi-static growth of Griffith cracks, Journal Mech. Phys. and Solids, 26, pp. 61-78. (1978)
  39. Shapery, R.A., A theory of mechanical behaviour of elastic media with growing damage and other changes in structures, J. Mech. Phys. Solids, 38, 215-253. (1990)
  40. Janson, J., Hult, J., Fracture mechanics and damage mechanics a combined approach, J. mechanique appliquee, vol.1, 1, pp. 69-84. (1977)
  41. Hill, R., Aspects of invariance in solids mechanics, Advances in Applied Mechanics, C.S. Yih, ed., Vol. 18, Academic Press, N.Y., pp. 1-75. (1978)
  42. Chow, C.L., Chen, X.F., An isotropic model of damage mechanics based on edochronic theory of plasticity, Int. J. Fract. 55, pp. 115-130. (1992)
  43. Cotterell, B., Rice, J.R., Slightly Curved or Kinked Cracks, Int. J. Fract., 16: 155-169. (1980)
  44. Šumarac, D., Krajčinović, D., A Mesomechanical Model for Brittle Deformation Processes: Part II, J. Appl. Mech., 56, pp. 57-62. (1989)
  45. Krajčinović, D., Šumarac, D., A Mesomechanical Model for Brittle Deformation Processes: Part I, J. Appl. Mech., 56, pp. 51-56. (1989)
  46. Horii, H., Nemat-Nasser, S., Overall Moduli of Solids with Micro-Cracks: Load Induced Ani- sotropy, J. Mech. Phys. Solids, 31, pp. 155-171. (1983)
  47. Krajčinović, D., Damage Mechanics, Mech. Mater., 8, pp. 117-197. (1989)
  48. Šumarac, D., Krajčinović, D., A Self-consistent Model for Microcracks Weakened Solids, Mech. Mater., 6, pp. 39-52. (1987)
  49. Venecanin, S., Thermal Incompatibility of Concrete Components and Thermal Properties of Carbonate Rocks, ACI Mater. J., 87, pp. 602-607. (1990)
  50. Šumarac, D., Damage of the Particulate Composite due to Thermal Internal Stresses, ECF11, Mechanisms and Mech. of Damage and Failure, Vol.III, Ed. J. Petit, ESIS, pp. 1913-1918. (1996)
  51. Šumarac, D., Krasulja, M., Damage of Plain Concrete due to Thermal Incompatibility of its Phases, Int. J. Damage Mech. (1997)
  52. Ju, J.W., A Micromechanical Damage Model for Uniaxially Reinforced Composites Weakened by Interfacial Arc Microcracks, J. Appl. Mech., 58, pp. 923-930. (1991)
  53. Foote, M.L.R., Mai, W.Y., Cotterell, B., Crack Growth Resistance Curves in Strain-Softening Materials, J. Mech. Phys. Solids, 34, pp. 593-607. (1986)
  54. Eshelby, J.D., The determination of the elastic field of an ellipsoidal inclusion and related problems, Proc. Roy. Soc., A241, pp. 376-396. (1957)
  55. Mura, T., Micromechanics of defects in solids, Martinus Nijhoff Publishers. (1987) REFERENCES
  56. Inglis, C.E., Stress in a plate due to the presence of cracks and sharp corners, Transactions of the Institute of Naval Architects, 55, pp. 219-241. (1913)
  57. Griffith, A.A., The phenomenon of rupture and flow in solids, Philosophical Transaction of the Royal Society, London A221, pp. 163-197. (1921)
  58. Irwin, G.R., Analysis of stresses and strains near the end of a crack traversing a plate. Journal of Applied Mechanics, 24, pp. 361-364. (1957)
  59. Paris, P.C., Gomez, M.P., and Anderson, W.P., A rational analytic theory of fatigue, The Trend in Engineering, 13, pp. 9-14. (1961)
  60. Elber, W., Fatigue crack closure under cyclic tension, Engineering Fracture Mechanics, 2, pp. 37-45. (1970)
  61. Pearson, S., Initiation of fatigue cracks in commercial aluminum alloys and the subsequent propagation of very short cracks, Engineering Fracture Mechanics, 7, pp. 235-247. (1975)
  62. Hobson, P.D., Brown, M., Rios, E.R., Short fatigue cracks, ECF Publication 1, Mechanical Engineering Publications, London, pp. 441-459. (1986)
  63. Hobson, P.D., The growth of short fatigue cracks in a medium carbon steel, Ph.D. Thesis, University of Sheffield, UK. (1985)
  64. Navarro, A., Rios, E.R., A model of short fatigue crack propagation with an interpretation of the short long crack transition, Fatigue Fract. Engng Mater. Struct., 10, pp. 169-186. (1987)
  65. Miller, K.J., Materials science perspective of metal fatigue resistance, Mater. Sci. Tech., 9, pp. 453-462. (1993)
  66. Murtaza, G., Akid, R., Modelling short fatigue crack growth in a heat-treated low-alloy steel, Int. J. Fatigue, 17 (3), pp. 207-114. (1995)
  67. Murtaza, G., Short fatigue crack growth in a high strength spring steel, Ph.D. Thesis, Univer- sity of Sheffield, UK. (1992)
  68. Angelova, D., Akid, R., A note on modelling short fatigue crack behaviour, Fatigue Fract. Engng Mater. Struct., 21, pp. 771-779. (1998) REFERENCES
  69. Williams, M.L., On the stress distribution at the base of a stationary crack, J. Appl. Mech., Vol. 79, pp. 104-109. (1957)
  70. Sih, G.C., Rice, J.R., The bending of plates of dissimilar materials with cracks, J. Appl. Mech., Vol. 31, pp. 477-482. (1964)
  71. Rice, J.R., Sih, G.C., Plane problems of cracks in dissimilar media, J. Appl. Mech., Vol. 32, pp. 418-423. (1965) 81
  72. Erdogan, F., Stress distribution in bonded dissimilar materials with cracks, J. Appl. Mech., Vol. 32, pp. 403-410. (1965)
  73. England, A.H., A crack between dissimilar media, J. Appl. Mech., Vol. 32, pp. 400-402. (1965)
  74. Rice, J.R., Elastic fracture mechanics concepts for interfacial cracks, J. Appl. Mech., Vol. 55, pp. 98-103. (1988)
  75. Hutchinson, J.W., Suo, Z., Mixed mode cracking in layered materials, Applied Mechanics, 29. (1992)
  76. Shih, C.F., Cracks on bimaterial interfaces: Elasticity and plasticity aspects, Material Science and Engineering, A143. (1991)
  77. Liu C., Lambros, J., Rosakis, A.J., Highly transient elastodynamic crack growth in bimaterial interface: higher order asymptotic analysis and optical experiments, J. Mech. Phys. Solids, 41. (1993)
  78. Veljković, J., Analysis of crack propagation on the bimaterial interface, MS, Faculty of Mechanical Engineering, Kragujevac. (1998)
  79. Veljković, J.M., Nikolić, R.R., Edge effect on the coating delamination, Fatigue 2003, 7-9 th April 2003, Cambridge, UK. (2003)
  80. Veljković, J.M., Nikolić, R.R., Application of the interface crack concept to problem of a crack between the thin layer and the substrate, Facta Universitatis, Series: Mechanics, Automatic Control and Robotics, Vol. 3, No.13, 2003, pp. 573-581. (2003)
  81. O'Dowd, N.P., Mixed-mode fracture mechanics of brittle/ductile interfaces, Miss-Matching of Welds, ESIS 17, Mechanical Engineering Publications, London, pp. 115-128. (1994)
  82. Wang, J.S., Suo, Z., Experimental determination of interfacial toughness curves using Brazili- an -nut sandwiches, Acta Metall., 38, pp. 1279-1290. (1990)
  83. Cao, H.C., Evans, A.G., An experimental study of the fracture resistance on bimaterial inter- face, Mech. Mater., 7, pp. 295-305. (1989)
  84. Liechti, K.M., Chai, Y.-S., Asymmetric shielding in interfacial fracture under in plane shear, J. Appl. Mech., Vol. 28. (1991)
  85. Stout, M.G., O'Dowd, N.P., Shih, C.F., Fracture toughness of alumina/niobium interfaces: experiments and analysis, Philosoph. Mag., 66, pp. 1037-1064. (1992)
  86. Wang, J.S., Fracture behavior of embrittled f.c.c. metal bicrystals and its misorientation depen- dence: Part I -experimental, Acta Metall., Vol. 39, pp. 779-792. (1991)
  87. Wang, J.S., Anderson, P.M., Fracture behavior of embrittled f.c.c. metal bicrystals and its mis- orientation dependence: Part II -theory and analysis, Acta Metall., Vol. 39. (1991)
  88. Wang, J.S., Mesarović, S.Dj., Directional dependence of corrosion fatigue of Fe-2.7% Si alloy bicrystals, Acta Metall., Vol. 43, pp. 3837-3849. (1995)
  89. Rice, J.R., Tensile crack tip fields in elastic-ideally plastic crystals, Mechanics of Materials 6, pp. 317-335. (1987)
  90. Anderson, P.M., Wang, J.S., Rice, J.R., Thermodynamic and mechanical models of interfacial embrittlement, MECH, 131. (1988)
  91. Mesarović, S.Dj., Kysar, J.W., Continuum aspects of directionally dependent cracking of an interface between copper and alumina crystals, Mechanics of Materials, pp. 272-280. (1996)
  92. Bagchi, A., Evans, A.G., The mechanics and physics of thin film decohesion and its measure- ment, Interface Science, 3. (1996)
  93. Suo, Z., Hutchinson, J.W., Interface crack between two elastic layers, Int. J. Fracture, Vol. 43, pp. 1-18. (1990) REFERENCES
  94. Перельмутер, A.В., Автоматическая Сварка, 9-10, 107-112. (2000)
  95. Hertzberg, R.W., Deformation and Fracture Mechanics of Engineering Materials, J. Wiley and Sons, New York. (1996)
  96. Knott, J.F., Fundamentals of Fracture Mechanics, Butterwords, London. (1973)
  97. Drobnjak, Dj., Lecture notes, Faculty of Technology and Metallurgy, Belgrade. (1996)
  98. Burns, K.W., Pickering, F.B., Journal of the Iron and Steel Institute, 202, pp. 899-906. (1964)
  99. Palmiere, E.J., Garcia, C.I., DeArdo, A.J., Processing, Microstructure and Properties of Micro- alloyed and Other Modern High Strength Low Alloyed Steels, The Iron and Steel Society, Warrendale, Pa, pp. 113-133. (1992)
  100. Allen, N.P. et al., Journal of the Iron and Steel Institute, 174, pp. 108-120. (1953)
  101. Mueschenborn, W. et al., Microalloying 95, Ed. M. Korchynsky, The Iron and Steel Society, Warrendale, Pa, pp. 35-48. (1995)
  102. Philips, R., Duckworth, W., Copley, F.E.L., Journal of the Iron and Steel Institute, 202, pp. 593-600. (1964)
  103. Petch, N.J., Fracture, ed. B.L. Averbach et al., Technology Press, Cambridge, Mass. pp. 54-67. (1959)
  104. Hougardy, H.P., Stahl und Eisen, 119, pp. 85-90. (1999)
  105. Roe, G.L., Notch toughness of steels, Metals Handbook 9 th Edition, Vol.1, pp. 689-709. (1978)
  106. Tanaka, T., Microalloying 95, Ed. M. Korchynsky, The Iron and Steel Society, Warrendale, Pa, pp. 165-181. (1995)
  107. Prediction of Steel Production for Year 2000 (in Swedish), Stetsen, 59, No.2, pp. 4-10. (2000) 15.
  108. Yurioka, N., Document IIW IX-1963-2000 (2000)
  109. Drobnjak, Dj., Koprivica, A., Fundamentals and Application of Microalloying Forging Steels, Ed. Chester J. van Tyne, G. Krauss and D. Matlock, TMS, Warrendale, Pa, pp. 93-106. (1996) REFERENCES
  110. Irwin, G.R., Fracture, in Handbuch der Physic VI, Springerverlag. (1958)
  111. Knott, J.F, Fundamentals of Fracture Mechanics, Butterworth's, London. (1973)
  112. Pellini, W.S., Evaluation of Principles for Fracture Safe Design of Steel Structures, NRL 6957, U.S. Naval Research Laboratory, Washington. (1969)
  113. ASTM E399-83: Standard Test Method for Plane-Strain Fracture Toughness of Metallic Mate- rials, Annual Book of ASTM Standards 1986, Vol. 03.01.
  114. BS 7448-Part 1:1991, "Fracture mechanics toughness tests -Methods for determination of K Ic , critical CTOD and critical J values of metallic materials" REFERENCES
  115. Standard Methods of Tension Testing of Metallic Materials, ASTM Designation E8-69, "Annual Book of ASTM Standards," American Society for Testing and Materials, Philadelphia.
  116. Dieter, G.E., Introduction to Ductility, in: "Ductility," American Society for Metals, Metals Park, Ohio. (1968)
  117. Standard Method of Test for Young's Modulus at Room Temperature, ASTM Elll-61, op. cit., pp. 409-413.
  118. Williams, M.L., Analysis of Brittle Behavior in Ship Plates, Symposium on Effect of Tempera- ture on the Brittle Behavior of Metals with Particular Reference to Low Temperatures, ASTM Spec. Tech. Publ., 158, pp. 11-44. (1954)
  119. Shank, Μ.Ε., A Critical Survey of Brittle Failure in Carbon Plate Steel Structures Other than Ships, ASTM Spec. Tech. Publ., 158, pp. 45-110. (1954)
  120. Fahey, N.H., Impact Testing of Metals, ASTM Spec. Tech. Publ., 466, pp. 76-92. (1970)
  121. Augland, Β., Brit. Weld. J., Vol. 9, p. 434. (1962)
  122. Grabulov, V., Prilog definisanju uticaja hemijskog sastava i debljine lima na pojavu prskotina u zavarenim spojevima čelika NIONIKRAL-70 (A contribution to determine the effect of chemical composition and plate thickness on crack occurrence in welded joints of NIONIK- RAL-70 steel), Master degree theses, Faculty of Technology and Metallurgy, Belgrade. (1986)
  123. Pellini, W.S., Weld. J., Vol. 50, pp. 915-1095, 147s-162s. (1971)
  124. Puzak, P.P., Shuster, M.E., Pellini, W.S., Weld. J., Vol. 33, p. 481s. (1954)
  125. Puzak, P.P., Pellini, W.S., NRL Rept. 5831, Aug. 21, 1962; ASTM Standards, pt. 31, pp. 582- 601, Designation E208-69. (1969)
  126. Robertson, Τ.S., Engineering, Vol. 172, pp. 445-448; J. Iron Steel Inst. London, vol. 175, p. 361. (1953)
  127. Pellini, W.S., Puzak, P.P., NRL Rept. 5920, Mar. 15, 1963, and Trans. ASME, Ser. A: J. Eng. Power, vol. 86, pp. 429-443. (1964) REFERENCES
  128. Blačić, I., Grabulov, V., Veljanovski, B.: Fracture analysis and fractography, IBR, pp. 217- 221. (1998)
  129. Gerić, K.: Crack initiation and propagation in HSLA welded joint, Doctoral thesis, in Serbian. (1997)
  130. ASM Metals Handbook, 9 th Ed., Vol.1, ASM (1987)
  131. Kim, B.C., Lee, S., Kim, N.J., Lee, D.Z.: Microstructure and local brittle zone phenomena in high strength low alloy steel welds, Met. Trans., Vol. 22A, pp. 139-149. (1991)
  132. Davis, C.L., King, J.E., Toughness comparison between the intercritically reheated coarse grained HAZ of two HSLA steels, ICF 8, Kiev. (1993) REFERENCES
  133. Agatonović, P., Development of residual strength evaluation tool based on stress-strain appro- ximation, International Journal of Fracture, 98, pp. 129-152.
  134. Agatonović, P., Procena integriteta i veka na osnovu analize podržane eksperimentima, Sedma medj. letnja škola mehanike loma, Ed. S. Sedmak i A. Sedmak, Velika Plana, Jun 1997.
  135. Agatonović, P., Različite strategije u cilju odredjivanja garantovane preostale čvrstoće i veka, Integritet i vek konstrukcija (2/2001), str. 75-89.
  136. Redmond G., From 'Safe Life' to Fracture Mechanics -F111 Aircraft Cold Temperature Proof Testing at RAAF Amberley, NDTSL-DGTA, RAAF Base Amberley, QLD.
  137. Kirk, M.T., The second ASTM/ESIS symposium on constraint effects in fracture; an Overview, Int. J. Press. Vess. & Piping, 64, pp. 259-275. (1995)
  138. Ritchie, R.O., Suresh, S., Some consideration on fatigue crack closure at near-threshold stress intensities due to fracture surface morphology, Metallurgical transaction, Vol. 13A, May 1982, pp. 937-940.
  139. Kumar, V. et al., An Engineering Approach for Elastic-Plastic Fracture Analysis, EPRI NP- 1931, Palo Alto, CA.
  140. Chell, G. et al, Significant Issues in Proof testing: A Critical Appraisal, NASA CR-4628, 1994.
  141. Agatonović, P., Taylor, N., Life Assessment Technology for Creep-Fatigue Situation Based on Damage Incubation, Fracture Mechanics Application in Lifetime Estimation of Power Plant Components, 26-30 May 1989, Dubrovnik.
  142. Agatonović, P., Lifetime temperature dependence of components, European Conference 'Life Assessment of Industrial Components and Structures', Cambridge, 30 Sept/1 Octob. 1993.
  143. Neubauer, B., Wedel, U., Restlife estimation of creeping components by means of replicas, Advances in Life Prediction Methods, ASME 1983.
  144. Viswanathan, R., Life assessment of high temperature components -current concerns and research in the US, 'Life Assessment of Industrial Components and Structures', Cambridge, 30 Sept/1 Octob. 1993.
  145. Schwalbe, K.H., Effect of weld metal mis-match on toughness requirements, International Jour- nal of Fracture, 56, pp. 257-277. (1992) REFERENCES
  146. Corrosion in power generating equipment, Proc. of 8 th International Brown Bowery Symp. On power generating equipment, Baden, Switzerland. (1983)
  147. Mars G. Fontana, Corrosion engineering, McGraw Hill International Editions. (1987)
  148. Šijački Žeravčić, V., Bakić, G., Đukić, M., Anđelić, B., Milanović, D., Model of outages clas- sification and statistical computation applied to tube system of thermal power plants, Preventivno Inženjerstvo, Vol. XI, No.2. (2003)
  149. Kaplun, Optimizacija nadežnosti energoustanovok, Nauka. (1982)
  150. Getman, Kozin, Nerazrušajušćij kontrolj, Moskva. (1997) 206 207
  151. Smith, M., Reliability-Centered Maintenance, McGraw-Hill. Inc., New York. (1993)
  152. Šijački Žeravčić, V., Anđelić, B., Bakić, G., Đukić, M., Milanović, D., Vlajčić, A., Maksimo- vić, P., Influence of material quality on TPP reliability, Elektroprivreda, Vol. LV, br. 4, str. 64- 71. (2002)
  153. Šijački Žeravčić, V., Bakić, G., Marković, D., Milanović, D., Đukić, M., RCM in Power Plant Practice Illustrated on Observation of Material Aging and Defining of Component Life Exhaustion, Proc. of Int. Conf. POWER-GEN Middle East 2002, Abu Dhabi, UAE, paper No334. (2002)
  154. Šijački Žeravčić, V., Bakić, G., Đukić, M., Anđelić, B., Material quolity control of thermal power plant components from the reliable exploitation point of view, Proc. on 10 th Symp. PREVING 2002, Belgrade, pp. 314-319.
  155. Šijački Žeravčić, V., Bakić, G., Milanović, D., Anđelić, B., Đukić, M., General consideration about design solution influence on reliability of thermal power plants, Proc. of 5 th Inter. Symp. DQM 2002, Belgrade, pp. 56-65.
  156. Šijački Žeravčić, V., Vujović, R., Milanović, D., Bakić, G., Đukić, M., Preventive engineering necessarity of pressure vessels undergone to the severe exploitation conditions, Procesna tehnika, Vol. XV, 3, pp. 266-271. (1999)
  157. Šijački Žeravčić, V., Radović, M., Stamenić, Z., Bakić, G., Djukić, M., Exploitation availibility estimation of furnace walls system of steam generator, Unit 5, 100MW, TE Kolubara, Report, Faculty of Mechanical Engineering, University of Belgrade, p. 41. (1998)
  158. Šijački Žeravčić, V., Marković, A., Radović, M., Stamenić, Z., Marinković, I., Case study of turbine blades damages of secondary stage turbine feed pump, Unit 2, TENT-B, Fac. of Mech. Eng., Belgrade, Report No 12-16-12.04/1995, p. 81. (1995)
  159. Šijački Žeravčić, V., Radović, M., Stamenić, Z., Bakić, G., The Influence of Microstructure Variations on Turbine Blades Fracture, Proc. of Conf. on Mat. Structure & Micromechanics of Fracture, July 1-3, 1998, Brno, Czech Republic, p. 63.
  160. Šijački Žeravčić, V., Kovačević, K., Radović, M., Marković, A., Fracture features of broken turbine blades, Proc. of 2 nd Congress of Electron Microscopy, Belgrade, Serbia, pp.185-186. (1997)
  161. Šijački Žeravčić, V., Milosavljević, A., Marković, A., Stamenić, Z., Milanović, D., Study of catastrophic failure causes of downcomer tubes of "Nikola Tesla -A", Report, Fac. of Mech. Eng., Belgrade, p. 93. (1992)
  162. Suutala, N., Takalo, T., Moisio, T., Ferritic -Austenitic Solidification Mode In Austenitic Stainless Steel Welds, Met. Trans. A, 11A, pp. 7-17. (1980)
  163. Lee, J.B., Eberle, W., Somsak, J.A., A New Test for Determining Intergranular Corrosion Properties of Stainless Steels, ibid 17, pp. 19-27.
  164. Šijački Žeravčić, V., Milosavljević, A., Marković, A., Stamenić, Z., Bratić, A., Milanović, D., Microstructural characteristics of joints after repair welding with austenitic electrode after prolonged service, Proc. of Inter. Symp. on Materials Ageing and Component Life Extension, Milan, Italy, pp. 723-732. (1995)
  165. Šijački Žeravčić, V., Radović, M., Stamenić, Z., Bakić, G., Đukić M., Failure analysis of fur- nace wall tubes, TE Pljevlja, 100 MW, Report, Fac. of Mech. Eng., Belgrade, p. 52. (1997)
  166. Šijački Žeravčić, V., Stamenić Z., Radović M., Bakić G., Đukić M., Hydrogen embrittlement of the furnace wall tubes, Proc. of Conf. on Mat. Structure & Micromechanics of Fracture, July 1-3, 1998, pp. 61 Brno, Czech Republic
  167. Đukić, M., Hydrogen damages of boiler furnace wall tube metal, MSc thesis, Faculty of Mechanical Engineering, University of Belgrade. (2002)
  168. Šijački Žeravčić, V., Đukić, M., Bakić, G., Hydrogen embrittlement and long time overheating of the furnace wall tubes due to exploitation over critical-heat-flux, Proc. of 3 rd Conf. of Mac. Met. Union, Ohrid, FYR Macedonia. (2000)
  169. Šijački Žeravčić, V., Voldemarov, A., Bakić, G., Đukić M., Anđelić, B., Milanović, D., Resi- dual Life Assessment of First Stage Steam Boiler Reheater Tubing System From the Corrosion 208
  170. Damages Point of View, Phisico Chemical Mechanics of Materials, special issue -Problems of Corrosion and Corosion Protections of Materials, No3, pp. 51-57. (2002)
  171. Šijački Žeravčić, V., Bakić, G., Đukić, M., Milanović, D., Review of Corrosion Damages of Water-Steam System of Domestic Fossil Fuel Plants in Regard to a Quality of Build-up Material, Phisico Chemical Mechanics of Materials, special issue -Problems of Corrosion and Corosion Protections of Materials, No3, pp. 57-64. (2002)
  172. Šijački Žeravčić, V., Bakić, G., Đukić, M., Milanović, D., Anđelić, B., Case Study of Boiler Tubes Damages Coused by Different Corrosion Processes, Proc. of Conf. METALURGIJA 2000, FYR Macedonia, pp. 63-68. (2000)
  173. Šijački Žeravčić, V., Bakić, G., Đukić, M., Anđelić, B., Study of material state, failure causes and further avaliability condition of pressurized magistral pipieline, Kolubara cole mine - rafination, Vreoci, Report, Fac. of Mech. Eng., Belgrade, pp. 52. (2003)
  174. Caleyo, F., Gonzalez, J.L., Hallen, J.M., A study on the reliability assessment methodology for pipelines with active corrosion defects, Pressure Vessels and Piping, 79, pp. 77-86. (2002) REFERENCES
  175. Troshchenko, V.T., Pokrovskii, V.V., Investigation of the regularities in fatigue fracture of steels Kh18N10T, Kh16N6, and 15G2AFDps and aluminum alloy AMg6 at low temperatures, Steels and Alloys for Cryogenic Engineering [in Russian], Naukova Dumka, Kiev, pp. 157- 164. (1977)
  176. Methodical Recommendations. MR-95. Determination of Crack Growth Resistance (Fracture Toughness) Characteristics under Cyclic Loading [in Russian], International Institute for Safe- ty of Complex Engineering Systems, Moscow, pp. 83-180. (1995)
  177. Ivanova, V.S., A concept of fatigue fracture toughness, Fatigue Fracture Toughness of Metals and Alloys [in Russian], Nauka, Moscow, pp. 5-19. (1981)
  178. Yokobori, T., Aizawa, T., A proposal for the concept of fatigue fracture toughness, Rep. Res. Inst. Str. Fract. Mater., 6, pp. 19-23. (1970)
  179. Ivanova, V.S., Kudryashov, V.G., A method for determination of fracture toughness (K Ic ) from fatigue test results, Probl. Prochn., No. 3, pp. 17-19. (1970)
  180. Yarema, S.Ya., Kharish, E.L., The function of duration of the crack development period under repeated impact reloading, Probl. Prochn., No. 8, pp. 28-32. (1970)
  181. Kawasaki, T., Nakanishi, S., Sawaki, Y., Fracture toughness and fatigue crack propagation in high strength steel from room temperature to 180°C, Eng. Fract. Mech., 7, pp. 465-472. (1975)
  182. Satoh, K., Toyoda, M., Nayma, M., Transition behaviors to cleavage fracture of low-toughness material with fatigue crack growth, J. Zosen Kyokai Ronbunshu, 146, pp. 490-496. (1979)
  183. Clark, W.G., Some problems in the application of fracture mechanics, ASTM STP 743, pp. 269-287. (1980)
  184. Kitsunai, Y., Fractographic study of fatigue crack propagation at low temperature, J. Soc. Mater. Sci. (Jap.), 34 (381), pp. 50-55. (1985)
  185. Kitsunai, Y., Ductile-brittle transition behavior of structural steel in fatigue crack growth under low temperature, Trans. Jap. Soc. Mech. Eng., A52 (476), pp. 896-901. (1986)
  186. Sawaki, Z., Tada, S., Hashimoto, S., Kawasaki, T., Fatigue fracture toughness and crack pro- pagation rate, Int. J. Fract., 35, pp. 125-137. (1987)
  187. Ando, K., Ogura, N., Nishioka, T., Effect of grain size on fatigue fracture toughness and plas- tic zone size attending fatigue crack growth, Proc. 2 nd Int. Conf. on Mechanical Behavior of Materials, Boston, U.S.A., pp. 533-537. (1976)
  188. Smolentsev, V.I., Kudryashov, V.G., A procedure of comparing the K Ic values obtained under static and cyclic loading, Zavod. Lab., No. 6, pp. 734-738. (1972)
  189. Kudryashov, V.G., Fatigue fracture toughness K If , Fiz.-Khim. Mekh. Mater., No. 5, pp. 110- 112. (1978)
  190. Yarema, S.Ya., Ostash, O.P., On fracture toughness of materials under cyclic loading, Fiz.- Khim. Mekh. Mater., No. 5, pp. 112-114. (1978)
  191. Ivanova, V.S., Maslov, L.I., Botvina, L.P., Fractographic features and fracture toughness of steel under cyclic loading, Probl. Prochn., No. 2, pp. 37-41. (1972)
  192. Malkov, A., The influence of hydrogen on fracture toughness and crack growth in titanium alloys, Advances in Fracture Resistance in Materials, Vol. 2, Tata McGraw-Hill Publishing Company Ltd., New Delhi, pp. 613-619. (1996)
  193. Roman, I., Ono, K., Model for fracture toughness alteration due to cyclic loading, Int. J. Fract., 19, pp. 67-80. (1992)
  194. Troshchenko, V.T., Pokrovskii, V.V., A study of mechanisms of fatigue and brittle fracture of steel 15G2AFDps at low temperature, Probl. Prochn., No. 3, pp. 11-17. (1973)
  195. Troshchenko, V.T., Pokrovskii, V.V., Prokopenko, A.V., Investigation of the fracture toughness of constructional steels in cyclic loading, Advances in Research on the Strength and Fracture of Materials, M. Taplin (Ed.), 3B, pp. 683-686. (1977)
  196. Troshchenko, V.T., Prokopenko, A.V., Pokrovskii, V.V., A study of fracture toughness charac- teristics under cyclic loading. Part 1, Probl. Prochn., No. 2, pp. 8-15. (1978)
  197. Troshchenko, V.T., Prokopenko, A.V., Pokrovskii, V.V., A study of fracture toughness charac- teristics under cyclic loading. Part 2, Probl. Prochn., No. 3, pp. 3-8. (1978)
  198. Troshchenko, V.T., Pokrovskii, V.V., Prokopenko, A.V., Cyclic loading and fracture tough- ness of steels, Fatigue Eng. Mater. Struct., 1, No. 2, pp. 247-266. (1979)
  199. Troshchenko, V.T., Pokrovskii, V.V., Skorenko, Yu.S. et al., The influence of cyclic loading on crack growth resistance characteristics of steels. Part 1, Probl. Prochn., No. 11, pp. 3-10 . (1980)
  200. Troshchenko, V.T., Pokrovskii, V.V., The influence of cyclic loading on crack growth resis- tance characteristics of steels. Part 2, Probl. Prochn., No. 12, pp. 14-17. (1980)
  201. Troshchenko, V.T., Yasnii, P.V., Pokrovskii, V.V., Investigation of the regularities in unstable crack propagation under cyclic loading, Probl. Prochn., No. 6, pp. 3-7. (1980)
  202. Pokrovskii, V.V., On prediction of the influence of load cycling on the brittle fracture resistance of cracked structural alloys, Probl. Prochn., No. 9, pp. 35-41. (1981)
  203. Troshchenko, V.T., Yasnii, P.V., Pokrovskii, V.V., Popov, A.A., The influence of temperature and loading asymmetry on cyclic crack growth resistance of steel 15Kh2NMFA, Probl. Prochn., No. 10, pp. 3-7. (1981)
  204. Troshchenko, V.T., Yasnii, P.V., Pokrovskii, V.V. et al., The effect of specimen dimensions on crack growth resistance of pressure-vessel heat-resistant steels, Probl. Prochn., No. 10, pp. 3- 11. (1982)
  205. Troshchenko, V.T., Pokrovskii, V.V., Fracture toughness of structural alloys under cyclic loading. Part 1, Probl. Prochn., No. 6, pp. 3-9. (1983)
  206. Troshchenko, V.T., Pokrovskii, V.V., Fracture toughness of structural alloys under cyclic loading. Part 2, Probl. Prochn., No. 6, pp. 10-15. (1983)
  207. Troshchenko, V.T., Yasnii, P.V., Pokrovskii, V.V., Prediction of the influence of loading cycle asymmetry on the fatigue fracture toughness of structural alloys, Probl. Prochn., No. 11, pp. 30-35. (1985)
  208. Troshchenko, V.T., Yasnii, P.V., Pokrovskii, V.V., The influence of test temperature on crack growth resistance of heat-resistant structural steels, Fiz.-Khim. Mekh. Mater., No. 1, pp. 98- 106. (1986)
  209. Pokrovskii, V.V., Kaplunenko, V.G., Zvezdin, Yu.I., Timofeev, B.T., The effect of loading cycle asymmetry on cyclic crack growth resistance characteristics of heat-resistant steels, Probl. Prochn., No. 11, pp. 8-13. (1987)
  210. Yasnii, P.V., Pokrovskii, V.V., Strizhalo, V.A., Dobrovol'skii, Yu.V., A study of the velocity of brittle crack jumps using an acoustic emission method, Probl. Prochn., No. 11, pp. 32-36. (1987)
  211. Troshchenko, V.T., Pokrovskii, V.V., Kaplunenko, V.G., Timofeev, B.T., The influence of speci- men dimensions and cycle asymmetry on the regularities of unstable crack propagation under cyclic loading, Probl. Prochn., No. 3, pp. 8-12. (1987)
  212. Pokrovskii, V.V., Tokarev, P.V., Yasnii, P.V. et al., The effect of test temperature on crack growth resistance of pressure-vessel steels with various impurity content, Probl. Prochn., No. 1, pp. 11-16. (1988)
  213. Troshchenko, V.T., Pokrovskii, V.V., Yasnii, P.V. et al., The influence of temperature on crack growth resistance characteristics of steel of various strength level, Probl. Prochn., No. 9, pp. 8- 13. (1988)
  214. Troshchenko, V.T., Pokrovskii, V.V., Yarusevich, V.L. et al., Investigation of the effect of temperature on crack growth resistance of steel and welded joint, Probl. Prochn., No. 2, pp. 8- 14. (1988)
  215. Yasnii, P.V., Pokrovskii, V.V., Shtukaturova, A.S. et al., A study of the influence of plastic prestraining on mechanical properties and microstructure of structural steel, Probl. Prochn., No. 9, pp. 41-45. (1988)
  216. Troshchenko, V.T., Pokrovskii, V.V., Yasnii, P.V. et al., The effect of single plastic prestrain- ing on crack growth resistance, Probl. Prochn., No. 12, pp. 9-14. (1988)
  217. Troshchenko, V.T., Pokrovskii, V.V., Yasnii, P.V. et al., The influence of single plastic pre- straining on brittle fracture resistance, Fiz.-Khim. Mekh. Mater., No. 6, pp. 3-12. (1989)
  218. Troshchenko, V.T., Yasnii, P.V., Tokarev, P.V., Timofeev, B.T., The influence of cyclic plastic prestraining on crack growth resistance, Probl. Prochn., No. 11, pp. 14-20. (1989)
  219. Troshchenko, V.T., Pokrovskii, V.V., Fatigue fracture toughness of steels, Engineering Against Fatigue, Balkema, Rotterdam, pp. 269-276. (1999)
  220. Troshchenko, V.T., Yasnii, P.V., Pokrovskii, V.V., Podkol'zin, V.Yu., The problem of scatter in fracture toughness data, Fatigue Fract. Eng. Mater. Struct., 16, No. 3, pp. 327-334. (1993)
  221. Troshchenko, V.T., Stable and Unstable Fatigue Crack Propagation in Metals, Handbook of Fatigue Crack Propagation in Metallic Structures (Ed. A. Carpinteri), Elsevier (1994)
  222. Troshchenko, V.T., Pokrovskii, V.V., Yasnii, P.V., Unstable fatigue crack propagation and fatigue fracture toughness of steel, Fatigue Fract. Eng. Mater. Struct., 17, No. 9, pp. 991-1001. (1994)
  223. Troshchenko, V.T. (Ed.), Cyclic Strains and Fatigue of Metals, [in Russian], Vol. 2, Naukova Dumka, Kiev. (1985)
  224. Troshchenko, V.T., Pokrovskii, V.V., Prokopenko, A.V., Crack Growth Resistance of Metals under Cyclic Loading [in Russian], Naukova Dumka, Kiev. (1987)
  225. Troshchenko, V.T., Pokrovskii, V.V., Yasnii, P.V., Kaplunenko, V.G., Limiting State of Metals with Cracks [in Russian], Preprint, Institute of Problems of Strength of the Academy of Scien- ces of the Ukr.SSR, Kiev. (1988)
  226. Prokopenko, A.V., Znachkovskii, O.Ya., Izarov, M.A., On determination of fracture toughness characteristics in impact bending with oscillography, Probl. Prochn., No. 7, pp. 47-51. (1978)
  227. Troshchenko, V.T., Pokrovskii, V.V., Yarusevich, V.L. et al., The influence of interstitial impurities on crack growth resistance of ductile titanium alloys, Probl. Prochn., No. 8, pp. 23- 36. (1991)
  228. Pokrovskii, V.V., Yasnii, P.V., Yarusevich, V.L. et al., A study of the crack growth resistance of a welded joint of VT6S titanium alloy, Probl. Prochn., No. 3, pp. 37-40. (1988)
  229. Tanaka, K., Nishijima, S., Matsuoka, S., Low-and high-cycle fatigue properties of various steels specified in JIS for machine structural use, Fatigue Fract. Eng. Mater. Struct., 4, No. 1, pp. 97-108. (1981)
  230. Pokrovskii, V.V., Yasnii, P.V., Kostenko, N.A. et al., The influence of accumulated operation time on crack growth resistance of the rolling stock freight car coupler carrier, Probl. Prochn., No. 2, pp. 28-32. (1988) REFERENCES
  231. Richards, C.W., Effect of size on the yielding of mild steel, Proc. Am. Soc. Testing Mat., Vol. 58, pp. 995-970. (1958)
  232. Morrisson, J.L.M., The yield of mild steel with particular reference of the effect of size of specimen, Proc. of the Inst. of Mech. Eng., 142, 1, pp. 193-223. (1939)
  233. Malmberg, T., Tsagrakis, I., Eleftheriadis, E., Aifantis, E.C., On the plasticity approach to size effects. Part 1/Reviews, Forschungszentrum Karlsruhe, Scientific Report FZKA 6321. (1999)
  234. Cook, G., The yield point and initial stages of plastic strain in mild steel subjected to uniform and non-uniformstress distributions, Phil. Trans. Roy. Soc., A, Vol. 23, pp. 103-147. (1931)
  235. Chechulin, B.B., Influence of specimen size on the characteristic mechanical value of plastic fracture, (in Russian), Zhur. Tekh. Fiz., 24, pp. 1093-1100. (1954)
  236. Matic, P., Kirby, G.C., Jolles, M.I., The relation of tensile specimen size and geometry effects to unique constitutive parameters for ductile materials, Proc. Roy. Soc., London, A 417, pp. 309-333. (1988)
  237. Sinclair, G.B., Chambers, A.E., Strength size effects and fracture mechanics: what does the physical evidence say?, Engineering Fracture Mechanics, Vol 26, N°2, pp. 279-310. (1987)
  238. Hutchinson, J.W., Singular behaviour at the end of a tensile crack in hardening material, J. Mech. Phys. Solids, Vol.16, pp. 13-31. (1968)
  239. Rice, J.R., Rosengreen, G.F., Plane strain deformation near a crack tip in a power law hardening material, J. Mech. Phys. Solids, Vol.16, pp. 1-12. (1968)
  240. Carassou, S., Soilleux, M., Marini, B., Probabilistic modelling of the size effect on ductility of a C-Mn steel, Journal de physique IV, pp. 63-70. (1998) 247
  241. Devaux, J.C., Rousselier, G., Mudry, F., Pineau, A., An experimental program for the valida- tion of local ductile fracture criteria using axisymmetricallly cracked bars and compact ten- sion specimens, Engineering Fracture Mechanics, Vol. 21, N°2, pp. 273-283. (1985)
  242. Carpinteri, A., Decrease of apparent tensile and bending strength with specimen size: Two different explanations based on fracture mechanics, International Journal of Solids and Struc- tures, Vol. 25, N°4, pp. 407-429. (1989)
  243. Sabnis, G.M., Mirza, S.M., Size effects in models concretes, J. Struct, Div. ASCE, Vol. 105, pp. 1007-1020. (1979)
  244. Carpinteri, A., Scaling laws and renormalisation groups for strength and toughness of disor- dered materials, Int. J. Solids Structures, 31, N°3, pp. 291-302. (1994)
  245. Kim, J.K., Mishashi, H., Kirikoshi, K., Narita, T., Proccedings of the first International Confer- ence on Fracture Mechanics of Concrete Structures, FRAMCOSI, Breckenridge, pp. 561-566. (1992)
  246. Bazant, Z.P., Size effect in blunt fracture: Concrete, rock, metal, Journal of Engineering Mechanics -ASCE , Vol 10, pp. 518-535. (1984)
  247. Bazant, Z.P., Scaling law of quasi brittle fracture asymptotic analysis, International Journal of Fracture, 83, pp. 19-40. (1997)
  248. Dodds, R., Ruggier, C., Koppenhoefer, K., 3D Constraint effects on models for transferability of cleavage fracture toughness, ASTM 1321, pp. 179-197. (1997)
  249. Koppenhoefer, K., Dodds, R., Constraint effects on fracture toughness of impact loaded pre- cracked Charpy specimens, International Journal of fracture, pp. 101-133. (1993)
  250. Pluvinage, G., Application of notch fracture mechanics to fracture emanating from stress concentrations, Nuclear Engineering, N°185, pp. 173-184. (1998)
  251. Aifantis, E.C., The physics of plastic deformation, International Journal of Plasticity, Vol. 3, pp. 212-247. (1987)
  252. Malmberg, T., Minutes of the task 5 group meeting, Joint research centre, EU project. FI4S- CT96-0024. (1998)
  253. Dlouhy, I., Holzmann, M., Chlup, Z., Fracture resistance of cast ferritic C.Mn steel for Container of spent Nuclear fuel, Transferability of fracture Mechanical Characteristics, Ed. Dlouhy, Nato Sciences Series, pp. 47-64. (2001) REFERENCES
  254. Sprowls, D.O., Evaluation of Corrosion Fatigue, Corrosion, Metal Handbook, Vol.13, 9 th Ed. ASM, Ohio, p. 291. (1997)
  255. Speidel, M.O., Hydrogen Embrittlement and Stress-Corrosion Cracking of Aluminum Alloys, Hydrogen Embrittlement and Stress-Corrosion Cracking, Ed., R. Gibela and R.F. Hehemann, ASM, Ohio, p. 271. (1986)
  256. Bockris, J.O'M., Dražić, D.M., Electrochemical Science, Francis & Taylor, London. (1972)
  257. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, Pergamon Press, New York, p. 226. (1966)
  258. Despić, A.R., Dražić, D.M., Tatić, O., Osnovi elektrohemije, Naučna knjiga, Beograd. (1971)
  259. Scully, J.R., Electrochemical Methods of Corrosion Testing, Corrosion, Metal Handbook, Vol. 13, 9 th Ed., ASM, Ohio, p. 212. (1997)
  260. Seys, A.A., Brabers, M.J., Van Haute, A.A., Corrosion 30, p. 47. (1974)
  261. Dexter, S.C., Localized Corrosion, Corrosion, Metal Handbook Vol. 13, 9 th Ed. ASM, Ohio, p. 104. (1997)
  262. Dražić, V.J., Dražić, D.M., J. Serb. Chem. Soc., 60, p. 699. (1995)
  263. Kaesche, H., Die Korrosion der Metalle, Physicalisch-chemische Prinzipien un actuelle Prob- leme, Berlin-Heiindelberg-New York. (1979)
  264. Jones, R.H., Stress Corrosion Cracking, Corrosion, Metal Handbook, Vol. 13, 9 th Ed. ASM, Ohio, p. 145. (1997)
  265. Dražić, D.M., Popić, J.P., J. Appl. Electrochem., 29, p. 43. (1999)
  266. Dražić, D.M., Popić, J.P., Russ. J. Electrochem., 36, p. 1182. (2000)
  267. Dražić, D.M., Popić, J.P., J. Serb. Chem. Soc., 67, p. 777. (2002)
  268. Kolotyrkin, Ya.M., Florianovich, G.M., Elektrokhimiya 9, p. 988. (1973)
  269. Florianovich, G.M., Russ. J. Electrochem., 36, p. 1037. (2000)
  270. Sprowls, D.O., Evaluation of Stress-Corrosion Cracking, Stress-Corrosion Cracking, Ed. R.H. Jones, ASM, Ohio, p. 363. (1993)
  271. Speidel, M.O., Metall. Trans. A, 6A, p. 631. (1975)
  272. Ritchie, R.O., Environmentally assisted sub-critical crack growth, University of California, lecture manuscript.
  273. Procter, R.P.M., Effect of Metallurgical Structure on Corrosion, Corrosion, Ed. L.L. Shreir, London, p. 1:33. (1976)
  274. Marsh, P.G., Gerberics, W., Stress-Corrosion Cracking of High-Strength Steels (Yield Strengths Greater than 1240 MPa), Chapter 3, Stress-Corrosion Cracking, Ed. R.H. Jones, ASM, Ohio, p. 41. (1993)
  275. Brown, B.F., Stress-Corrosion Cracking Control Measures, NACE, NBS monograph, Hous- ton, p. 55. (1977)
  276. Staford, S.W., Mueler, W.H., Failure Analysis of Stress-Corrosion Cracking, Chapter 18, Stress-Corrosion Cracking, Ed. R.H. Jones, ASM, Ohio, p. 417. (1993)
  277. Davis, J.R., Corrosion of Aluminum and Aluminum Alloys, ASM, Ohio. (1999)
  278. Gerberich, W.W., Gundersen, A.W., Design, Materials Selection and Fracture Analysis, Chap- ter 9, Application of Fracture Mechanics for Selection of Metallic Structural Materials, Ed. J.E. Campbell, W.W. Gerberich and J.H. Underwood, ASM, Ohio, p. 311. (1982)
  279. Hertzberg, R.W., Deformation and Fracture Mechanics of Engineering Materials, J. Wans Sons, New York. (1983)
  280. Drobnjak, Dj., Mehanika loma i odabrani zadaci iz mehanike loma (Fracture Mechanics and Chosen Problems from Fracture Mechanics), Physics of Fractures, (material for MS studies), Beograd. (1990)
  281. Failure Analysis and Prevention, Metals Handbook, Vol. 11, 9 th Ed. ASM, Ohio. (1997)
  282. Fatigue and Fracture, Metals Handbook, Vol. 19, 9 th Ed., ASM. (1997)
  283. McEvily, A.J., Atlas of Stress-Corrosion and Corrosion Fatigue Curves, ASM, Ohio, p.78. (1990) REFERENCES
  284. Maneski, T., Kompjutersko modeliranje i proračun struktura, Monography in Serbian, Faculty of Mechanical Engineering, Belgrade. (1998)
  285. Maneski, T., Computer modelling and structural analysis, Faculty of Mechanical Engineering, Belgrade. (2000) 301
  286. Maneski, T., Rešeni problemi čvrstoće konstrukcija, Monography in Serbian, Faculty of Mechanical Engineering, Belgrade. (2002)
  287. Maneski T., Milošević-Mitić V., Ostrić D., Postavke čvrstoće konstrukcija, Priručnik, Mašinski fakultet, Beograd (2002)
  288. Zloković, Đ., Maneski, T., Nestorović, M., Group supermatrix procedure in computing of engineering structures, Structural Engineering Review, Vol. 6, No1, pp. 39-50. (1994)
  289. Zloković, G., Maneski, T., Nestorović, M., Group theoretical formulation of nonsymmetrical systems by the group supermatrix procedure, Computers and Structures 71, pp. 637-649 (1999)
  290. Maneski, T., Rešeni problemi čvrstoće konstrukcija opreme u fabrikama cementa Beočin i Popovac, Procesna tehnika (journal in Serbian), Belgrade. (2001)
  291. Maneski, T., Aranđel, B., Uticaj povećanja brzine kretanja na obrtno postolje elekro lokomo- tive JŽ 441, (in Serbian) JUŽEL -7 th Conference, Vrnjačka Banja. (2001)
  292. Maneski, T., Mišljenje o konstruktivnom rešenju bidona sa potrebnim proračunom, (in Serbian) Kolubara Prerada Vreoci, Faculty of Mechanical Engineering, Belgrade. (2001)
  293. Babić, A., Maneski, T., Danojlić, V., Okvir za reiženjering obrtnih postolja lokomotiva JŽ 441, (in Serbian) X Conference -Železničko mašinstvo, Niš. (2002)
  294. Maneski, T., Stefanović, D., Knežević, M., Sanacija radnog točka bagera C700S, V Yugoslav simposium with international participation MAREN2002, Faculty of Geology and Mining, Belgrade. (2002)
  295. Maneski, T., Ivanković, M, Stanojević, D., Rekonstrukcija rotacione peći 1000 t/dan FC Popo- vac, International simposium Cement'02, Struga, Macedonia. (2002)
  296. Sedmak, A., Maneski, T., Sedmak, S., Primena koncepta integriteta konstrukcije na analizu stanja energetske opreme, (in Serbian) Journal "Elektroprivreda," 1/02, Belgrade. (2002)
  297. Maneski, T., Ignjatović, D., Bucket Wheel Excavator SchRs 800 Reconstruction On Opencast Mine Drmno (Yugoslavia), Conference DIAGO 2003, VŠB-TU, Ostrava, Czech R. (2003)
  298. Maneski, T., Bošnjak, S., Daničić, D., Analiza popuštanja prstena oslonca rotacione peći br.3 u FC Beočin, (in Serbian) journal "Procesna tehnika," Belgrade. (2003) SINTAP -STRUCTURAL INTEGRITY ASSESSMENT PROCEDURE
  299. Nenad Gubeljak, Faculty of Mechanical Engineering, Maribor, Slovenia Uwe Zerbst, GKSS Research Centre, Institute of Materials Research, Geesthacht, Germany REFERENCES
  300. SINTAP: Structural Integrity Assessment Procedure. Final Report. EU-Project BE 95-1462. (1999) Brite Euram Programme, Brussels.
  301. R., Tada, H., Paris, P.C., Irwin, G.
  302. Murakami, Y., et al. (Eds.), Stress Intensity Factor Handbook, Vol. 1&2 (1987), Vol. 3 (1992), Pergamon Press, Oxford.
  303. Schwalbe, K-H., Kim, Y-J., Hao, S., Cornec, A., Koçak, M., EFAM, ETM-MM96: the ETM method for assessing significance of crack-like defects in joints with (strength mismatch), GKSS Report 97/E/9. (1997)
  304. Schwalbe, K-H., Zerbst, U, Kim, Y-J., Brocks, W., Cornec A., Heerens J., Amstutz H., EFAM ETM 97: the ETM method for assessing crack-like defects in engineering structures, GKSS Report 98/E/6. (1988)
  305. Kumar, V., German, M.D., Shih, C.F., An en analysis, EPRI-Repo SINTAP Special issue of Engineering Fracture Mechanics, Vol. 67, Issue 6, pp. 476-668, Dec. 2000
  306. Ainsworth, R.A., Bannister, A.C., Zerbst, U., An overview of the European flaw assessment procedure SINTAP and its validation, Int. J. Pres. Ves. & Piping, 77, pp. 869-876. (2001)
  307. Zerbst, U., Hamann, R., Wohlschlegel, A., Application of the European flaw assessment proce- dure SINTAP to pipes, Int. J. Pres. Ves. & Piping, 77, pp. 697-702. (2000)
  308. BS 7448: Part 2: 1997: Fracture mechanics toughness tests, Part 2. Method for determination of K Ic , critical CTOD and critical J values of welds in metallic materials, British standards institution, London. (1997)
  309. Miller, A.G., Review of Limit Loads of Structures Containing Defects. Int. J. Pres. Ves. & Piping, 32, pp. 197-327. (1988) REFERENCES
  310. Rice, J.R., A Path Independent Integral and Approximate Analysis of Strain Concentration by Notches and Cracks, Journal of Applied Mechanics, 35, pp. 379-386. (1968)
  311. Knowles, J., Sternberg, E., On a class of conservation laws in linearized and finite elasto- statics, Arch. Rat. Mech. Anal., 44, pp. 187-211. (1972)
  312. Hellen, T., Blackburn, W., The calculation of stress intensity factor for combined tensile and shear loading, Int. J. Fract., 11, pp. 605-617. (1975)
  313. V.E. Saouma, Fracture Mechanics, Dept. of Civil Environmental and Architectural Engineer- ing, University of Colorado, Boulder, CO, 80309-0428. (2000)
  314. Kojić, M., Živković, M., Jovičić, G., Vlastelica, I., Đorđević, V., Mehanika loma-Teorijske osnove i numeričke metode rešavanja, Studija, Mašinski fakultet Kragujevac, Laboratorija za inženjerski softver. (2003)
  315. Moes, N., Dolbow, J., Belytschko, T., A Finite Element Method for Crack Growth Without Remeshing, Int. J. Numer. Meth. Engn., 46, pp. 131-150. (1999)
  316. Cung-Yi Lin, Determination of the Fracture Parameters in a Stiffened Composite Panel, PhD Thesis, North Carolina State University. (2000)
  317. Enderlein, M., Kuna, M., Comparison of finite element techniques for 2D and 3D crack analysis under impact loading, International Journal for Solids and Structures, 40. (2003)
  318. Kim, Y.J., Kim, H.G., Im, S., Mode decomposition of three-dimensional mixed-mode crack via two-state integral, International Journal of Solids and Structures, 38, pp. 6405-6425. (2001)
  319. Kim, J-H., Paulino, G., T-stress, mixed-mode stress intensity factors, and crack initiation angles in functionally graded materials: a unified approach using the interaction integral method, Comp. Method Appl. Mech. Engng. 192, pp. 1463-1494. (2003)
  320. Andersen, M.R., Fatigue Crack Initiation and Growth in Ship Structures, PhD Thesis, Depart- ment of Naval Architecture and Offshore Engng, Technical University of Denmark. (1998)
  321. Iida, S., Kobayashi, A.S., Crack-Propagation Rate in 7075-T6 Plates under Cyclic Tensile and Transverse Shear Loadings, Journal of Basic Engineering, pp. 764-769. (1969)
  322. Tanaka, K., Fatigue Crack Propagation from a Crack Inclined to the Cyclic Tensile Axis, Engineering Fracture Mechanics, 6, pp. 493-507. (1974)
  323. Živković, M., Kojić, M., Slavković, R., Vulović, S., Đorđević, V., Vujanac, R., Analiza prslina u kućištu turbine 4 TE Kolubara, Mašinski fakultet Kragujevac, Laboratorija za inženjerski softver. (2002)
  324. Živković, M., Kojić, M., Slavković, R., Vulović, S., Đorđević, V., Procena preostalog radnog veka bubnja kotla TE "Nikola Tesla"-A2, 210MW, Elaborat, Mašinski fakultet Kragujevac, Laboratorija za inženjerski softver. (2002) RELIABILITY AND SAFE SERVICE OF STRUCTURES
  325. Milosav Ognjanović, Faculty of Mechanical Engineering, Belgrade, S&Mn REFERENCES
  326. Haibach, E., Betriebsfestigkeit -Verfahren und Daten zur Bauteilberechnung, VDI-Verlag
  327. Leitch, R., Reliability Analysis for Engineers -An Introduction, Oxford scientific publications, Oxford University Press. (1995)
  328. Savić, Z., Janković, M., Prilog proučavanju dinamičke izdržljivosti zubaca zupčanika pri promenljivom opterećenju, Zbornik radova sa svetskog simpozijuma o zupčanicima i zupčas- tim prenosnicima, Kupari-Dubrovnik, Vol B, pp. 305-319. (1978)
  329. Savić, Z., Pouzdanost -viši stepen tačnosti provere čvrstoće elemenata konstrukcija, Zbornik radova sa naučno-stručnog skupa "Istraživanje i razvoj mašinskih elemenata i sistema - IRMES-95", Niš, pp. 2-10. (1995)
  330. Savić, Z., Ognjanović, M., Janković, M., Osnovi konstruisanja -Zbirka zadataka, Naučna knjiga Beograd, 1981, 1986, 1988, 1991.
  331. Todorović, J., Zelenović, D., Efektivnost sistema u mašinstvu, Naučna knjiga Beograd. (1981)
  332. Ivanović, G., Stanivuković, D., Pouzdanost tehničkih sistema -Zbirka rešenih zadataka, Mašinski fakultet, Beograd. (1987)
  333. Tošić, M., Terzić, I., Gligorijević, R., Ognjanović, M., Failure improf glow-discharge-nitrided steel rotary specimens, Journal of Surface and Coating Technology, No.63, pp. 73-83. (1994)
  334. Ognjanović, M., Gligorijević, R., Fatigue strength of nodular connecting rods, Proceedings of the International Conference on Fatigue and Stress of Engineering Materials and Components, Imperial College London. (1988)
  335. Ognjanović, M., Fatigue and failure probability of shafts under operating conditions, Interna- tional Journal for Vehicle Mechanics, Engines and Transportation Systems, Mobility Vehicle Mechanics, Vol.21, No 4, pp. 43-50. (1995)
  336. Ognjanović, M., Gear Failure and Reliability in Resonance Conditions, Proceedings of the International Congress "Gear Transmissions 95", Sofia, Vol. 2, pp. 85-88. (1995)
  337. Ognjanović, M., Ristivojević, M., Milić, M., Lomovi pogonskih vratila-osovina električnih lokomotiva, Časopis "Železnica", No 1-2, pp. 23-28. (1997)
  338. Sedmak, S., Sedmak, A., An Experimental Investigation into the Operational Safety in a W Penstock by a Fracture Mechanics Approach, Fatigue Fract Eng M, 18 (5), pp. 527-538. (19
  339. Kuder, J., Raztresen, J., Rak, I., Gliha, V., The Use of Fra s and Model Te elding in the World, 27 (1/2), pp. 19-35. (1998)
  340. Rojko, D., Določitev lomne žilavosti na velikih preizkušancih in primerjava lomne žilavosti na standardnih preizkušancih, Univeza v Mariboru, Fakulteta za strojništvo, Magisterij, Maribor. (2000)
  341. Gliha, V., Rojko, D., The Pre-Cracking of Wide Plate Specimens, International Journal of Pres- sure Vessels and Piping, in press
  342. Rojko, D., Gliha, V., The CTOD Testing using Wide Plate Specimens, in preparation
  343. Gubeljak, N., The Fracture Behaviour of Specimens with a Notch Tip Partly in the Base Metal of Strength Mis-Match Welded Joints, Int J of Fracture, 100, pp. 169-181. (1999)
  344. Easterling, K., Introduction to the Physical Metallurgy of Welding, Butterworths. (1983)
  345. Karlsson, L., Thermal Stresses in Welding, Thermal Stresses I, Edited by R.B.Hetnarski, Elsevier Science Publisher. (1986)
  346. Vojvodič-Tuma, J., Rak, I., Vehovar, L., Optimiranje varjenja jekla Niomol 490K za izdelavo zahtevnih konstrukcij, Poročilo o projektu štev. L2-8538-0206-97/99, IMT Ljubljana. (1999)
  347. Rojko, D., Izoblikovanje mikrostruktur večvarkovnega zvara s stališča termičnega vpliva var- jenja, Univeza v Mariboru, Fakulteta za strojništvo, Doktorat, Maribor. (2003)
  348. Gliha, V., Analiza nosilnosti homogenih večvarkovnih zvarnih spojev pri utrujanju z ozirom na vplive parametrov varjenja in gradnje vara, Univerza v Ljubljani, Naravoslovnotehniška fakulteta, Doktorat, Ljubljana. (1998)
  349. ć, Z., Pašić, S., Manjgo, M., Vuherer, T., Experimental analysis of resistance nd .
  350. Grabec, I., Mužič, P., Kuder, J., Gliha V., Use of Acoustic Emission in Testing Strength of Welded Structures, Strojniški vestnik, 24 (3-4), pp. 1-11. (1978)
  351. Gliha, V., Kuder, J., Rak, I., Grabec, I., Kritičnost uniformiranih ravninskih diskontinuitet na modelu visokotlačnega cevovoda RHE Bajina Bašta (Critical state of uniform planar discon- tinuities on the model of high pressure penstock RHE Bajina Bašta), Strojniški vestnik, 26 (7- 8), pp. 160-169. (1979) elded 95) sting cture Mechanic for Assurance of the Safety of Penstocks, W
  352. Rak, I., Gliha, V., Koçak, M., Weldability and Toughness Assessment of Ti-Microalloyed Off- shore Steel, Metallurgical and Materials Transactions A, 28A, January, pp. 199-206. (1997)
  353. Gliha, V., Burzi to the impact of heat affected zone of HSLA steel, 2 DAAAM International Conference on Advanced Technologies for Developing Countries -ATDC'03, Tuzla. (2003) BS 7448-1: Fracture Mechanics Toughness Test, Part 1. Meth 16 od for Determination of K Ic , Critical CTOD and Critical J Values of Metallic Materials. (1991)
  354. ASTM E 399-90: Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials. (1997)
  355. Wei, S., Tingshi, Z., Da 18 xing, G., Dunkang, L., Poliang, L., Xiaoyun, Q., Fracture Toughness Measurement by Cylindrical Specimens with Ring-Shaped Crack, Engineering Fracture Mechanics, 16, No.1, pp. 69-82. (1982)
  356. Gliha, V., Vuherer, T., Ule, B., Vojvodič-Tuma, J., The Fracture Resistance of Simulated HAZ Areas in a HSLA Structural Steel, in the course of publication
  357. BS 7448-2: Fracture Mechanics Toughness Test, Part 2. Method for Determination of K Ic , Critical CTOD and Critical J Values of Welds in Metallic Materials. (1997)
  358. Gliha, V 21 ., Vuherer, T., Pucko, B., Ule, B., Vojvodič-Tuma, J., An evaluation of steel embrittle- ment caused by welding, Materials and Manufacturing Processes, Vol.19, No. 2, pp. 139-157.
  359. ASTM E 992-84: Standard Practice for Determination of Fracture Toughness of Steels Using Equivalent Energy Methodology. (1989)
  360. Schwalbe, K.-H., Bruchmechanik metallischer Werkstoffe, Carl Hanser Verlag. (1 23 980)
  361. Peterson, R.E., Stress Concentration Factors, Wiley. (1974) 223-238. (1987) rance. (1996)
  362. Noda, N-A., Nisitani, M., Stress Concentration of a Strip with a Single Edge Notch, Engineering Fracture Mechanics, 2, pp.
  363. Gliha, V., Toplak, D., Fatigue Strength of a Butt Welded HSLA Structural Steel with Backing, 5 th International Fracture Mechanics Summer School, Dubrovnik, Yugoslavia. (1989)
  364. Gliha, V., Influence of Small Surface Discontinuities at the Weld Toe on Bending Fatigue Strength, 11 th Biennial European Conference on Fracture, Poiters-Futuroscope, F
  365. Gliha, V., Fatigue Strength of Material at the Weld Toe in the Presence of Surface Micro-Defects, 12 th Biennial Conference on Fracture, Sheffield, UK. (1998) REFERENCES
  366. Inglis, C.E., Stresses in a plate due to the presence of cracks and sharp corners, Proc. Inst. Naval Arch. 55, pp. 219-241. (1913)
  367. Griffith, A.A., The phenomena of rupture and flow in solids, Phil. Trans. Roy. Soc. London.
  368. Irwin, G.R., Kies, J.A., Fracturing and fracture dynamics, Welding Journal. Res. Sup. 31 (2), pp. 95s-100s. (1952)
  369. Irwin, G.R., Kies, J.A., Critical energy rate analysis of fracture strength, Welding Journal. Res. Sup. 33 (4), pp. 193s-198s. (1954)
  370. Irwin, G.R., Plastic zone near a crack and fracture toughness, Proc. 7 th Sagamore Research Conf. on Mechanics & Metals Behavior of Sheet Material, Vol.4, pp. 463-478, Racquette Lake, NY. (1960)
  371. Dugdale, D.S., Yielding of steel sheets containing slits, J. Mech. Phys. Solids, 8, pp. 100-104. (1960)
  372. Wells, A.A., Application of fracture mechanics at and beyond general yielding, British Weld- ing Journal, 11, pp. 563-570. (1963)
  373. Rice, J.R., A path independent integral and the approximate analysis of strain concentration by notches and cracks, J. Appl. Mech. 35, pp. 379-386. (1968)
  374. Paris, P.C., Gomez, R.E., Anderson, W.E., A rational analytic theory of fatigue, The Trend in Engineering, 13 (1), pp. 9-14, University of Washington. (1961)
  375. Landes, J.D., Begley, J.A., A fracture mechanics approach to creep crack growth, ASTM STP 590, pp. 128-148, Philadelphia, ASTM. (1976)
  376. Speidel, M.O., Theory of stress corrosion cracking in alloys, J.C. Scully (ed.), NATO Scienti- fic Affair Division. Brussels, pp. 345-354. (1970)
  377. JUS ISO 5817, Elektrolučno zavarivanje čelika -uputstvo za ocenu nivoa kvaliteta, JUS. (in Serbian) (1997)
  378. Reed, R.P., Schramm, R.E., Entry level inspection of pipeline circular welded joints with accent to non-destructive testing, (in Serbian) Monograph of the 3rd International Fracture Mechanics Summer School (IFMASS 3), Ed. S. Sedmak, pp. 319-338. (1985)
  379. Read, D.T., Fracture mechanics analysis and curves of allowed flaw size for surface cracks in pipelines, (in Serbian), ibid. 12, pp. 319-338. (1985)
  380. Reed, R.P., et al., Fitness-for-service criteria for pipeline girth-weld quality, Final Report to the U.S. DOT, NBS, Boulder, CO, USA. (1983)
  381. Hicho, G.E., Assessing the significance of blunted flaws in quality inspection of welded pipe- lines for service entry level, (in Serbian), ibid 12, pp. 339-353. (1985)
  382. Burdekin, F.M., Dawes, M.G., Practical use of linear elastic and yielding fracture mechanics with particular reference in pressure vessels, Proc. of the Institute of Mechanical Engineering Conference, London, pp. 28-37. (1971)
  383. Bednar, H.H., Pressure Vessel Design Handbook, Van Nostrand Reinhold Comp., New York, NY. (1986)
  384. PD6493:1980, Guidance on methods for assessing the acceptability of flaws in fusion welded structures, London: British Standard Institution. (1980)
  385. PD6493:1991, Guidance on methods for assessing the acceptability of flaws in fusion welded structures, London, BSI. (1991)
  386. Report No.12-10-12.03/98, Faculty of Mechanical Engineering, Belgrade (in Serbian). (1998)
  387. Adžiev, T., Contribution to studying the influence of residual stresses on the fracture resis- tance of welded structures containing a crack, (in Macedonian), Doctoral Thesis, Faculty of Mechanical Engineering, Skopje. (1988)
  388. Gerić, K., Crack initiation and growth in high strength steel welded joints, (in Serbian) Doc- toral Thesis, Faculty of Technology and Metallurgy, Belgrade. (1997)
  389. Hertzberg, R.W., Deformation and Fracture Mechanics of Engineering Materials, John Wiley & Sons, New York, NY. (1996)
  390. Maneski, T., Sedmak, A., Structural integrity, (in Serbian), Journal of the Society for Struc- tural Integrity and Life, Belgrade, Vol.1, No.2, pp. 107-110. (2001)