Academia.eduAcademia.edu

Modeling and Experimental Studies of Mass Transfer in Cotton Fabrics

2001, Textile Research Journal

https://doi.org/10.1016/J.CES.2016.12.041

Abstract

A rotating packed bed (RPB), which creates a high gravity environment by the centrifugal force, is one of the typical process intensification equipment. The cavity zone is an important mass transfer zone of a RPB. However, there have been very few studies to date on the modeling of mass transfer in the cavity zone. In this work, the liquid droplet velocity in the cavity zone was obtained by analysing the images taken by a high-speed camera and correlations for droplet velocity were fitted. Combining the above imaging results and other parameters, a mathematical model was established to predict the mass transfer area of the cavity zone. The mass transfer system of chemisorption of CO 2 into NaOH solution was employed and mass transfer experiments were carried out at various rotational speeds, liquid initial velocities, and outer packing radii. The predicted mass transfer area from the model agreed well with the experimental data within a deviation of ±20%.

References (28)

  1. Agarwal, L., Pavani, V., D.P., Kaistha, N., 2010. Process intensification in higee absorption and distillation design procedure and applications. Ind. Eng. Chem. Res. 49, 10046-10058. http://dx.doi.org/10.1021/ie101195k.
  2. Ahmed, M., Youssef, M.S., 2014. Influence of spinning cup and disk atomizer configurations on droplet size and velocity characteristics. Chem. Eng. Sci. 107, 149-157. http://dx.doi.org/10.1016/j.ces.2013.12.004.
  3. Chen, J.F., Gao, H., Zou, H.K., Chu, G.W., Zhang, L., Shao, L., Xiang, Y., Wu, Y.X., 2010. Cationic polymerization in rotating packed bed reactor: experimental and modeling. AIChE J. 56, 1053-1062. http://dx.doi.org/10.1002/aic.11911.
  4. Chen, J.F., Shao, L., Guo, F., Wang, X.M., 2003. Synthesis of nano-fibers of aluminum hydroxide in novel rotating packed bed reactor. Chem. Eng. Sci. 58, 569-575. http://dx.doi.org/10.1016/s0009-2509(02)00581-x.
  5. Chen, Y.S., 2011. Correlations of mass transfer coefficients in a rotating packed bed. Ind. Eng. Chem. Res. 50, 1778-1785. http://dx.doi.org/10.1021/ie10125z.
  6. Chen, Y.S., Lin, F.Y., Lin, C.C., Tai, C.Y.-D., Liu, H.S., 2006. Packing characteristics for mass transfer in a rotating packed bed. Ind. Eng. Chem. Res. 45, 6846-6853. http://dx.doi.org/10.1021/ie060399l.
  7. Chu, G.W., Luo, Y., Shan, C.Y., Zou, H.K., Xiang, Y., Shao, L., Chen, J.F., 2014. Absorption of SO 2 with ammonia-based solution in a cocurrent rotating packed bed. Ind. Eng. Chem. Res. 53, 15731-15737. http://dx.doi.org/10.1021/ ie502519v.
  8. Gao, Z.M., Ma, S.G., Shi, D.T., Wang, J.N., Bao, Y.Y., Cai, Z.Q., 2015. Droplet characteristics and behaviors in a high-speed disperser. Chem. Eng. Sci. 126, 329-340. http://dx.doi.org/10.1016/j.ces.2014.12.049.
  9. Guo, F., Chong, Z., Kai, G., Feng, Y., Gardner, N.C., 1997. Hydrodynamics and mass transfer in cross-flow rotating packed bed. Chem. Eng. Sci. 52, 3853-3859. http://dx.doi.org/10.1016/S0009-2509(99)00369-3.
  10. Guo, K., 1996. Observation of Fluid Flow in Rotating Packed Bed (Ph.D thesis). Beijing University of Chemical Technology, Beijing.
  11. Guo, K., Zhang, Z.Z., Luo, H.J., Dang, J.X., Qian, Z., 2014. An innovative approach of the effective mass transfer area in the rotating packed bed. Ind. Eng. Chem. Res. 53, 4052-4058. http://dx.doi.org/10.1021/ie4029285.
  12. Kelleher, T., Fair, J.R., 1996. Distillation studies in a high-gravity contactor. Ind. Eng. Chem. Res. 35, 4646-4655. http://dx.doi.org/10.1021/ie950662a.
  13. Li, W.Y., Wu, W., Zou, H.K., Chu, G.W., Shao, L., Chen, J.F., 2010. A mass transfer model for devolatilization of highly viscous media. Chin. J. Chem. Eng. 18, 194- 201.
  14. Li, Y.W., Wang, S.W., Sun, B.C., Arowo, M., Zou, H.K., Chen, J.F., Shao, L., 2015. Visual study of liquid flow in a rotor-stator reactor. Chem. Eng. Sci. 134, 521-530. http://dx.doi.org/10.1016/j.ces.2015.05.046.
  15. Luo, Y., Chu, G.W., Zou, H.K., Zhao, Z.Q., Dudukovic, M.P., Chen, J.F., 2012. Gas-liquid effective interfacial area in a rotating packed bed. Ind. Eng. Chem. Res. 51, 16320-16325. http://dx.doi.org/10.1021/ie302531j.
  16. Mahulkar, A.V., Marin, G.B., Heynderickx, G.J., 2015. Droplet-wall interaction upon impingement of heavy hydrocarbon droplets on a heated wall. Chem. Eng. Sci. 130, 275-289. http://dx.doi.org/10.1016/j.ces.2015.03.012.
  17. Mundo, C., Sommerfeld, M., Teropea, C., 1995. Droplet-wall collisions: experimental studies of the deformation and breakup process. Int. J. Multiphase Flow 21, 151-173. http://dx.doi.org/10.1016/0301-9322(94)00069-V.
  18. Munjal, S., Dudukovc ´, M.P., Ramachandran, P., 1989. Mass-transfer in rotating packed beds-I. Development of gas-liquid and liquid-solid mass-transfer correlations. Chem. Eng. Sci. 44, 2245-2256. http://dx.doi.org/10.1016/0009- 2509(89)85159-0.
  19. Nasser, A., 2011. Handbook of Atomization and Spray. New York, http://dx.doi.org/ 10.1007/978-1-4419-7264-4.
  20. Peel, J., Howarth, C.R., Ramshaw, C., 1998. Process intensification: higee seawater deaeration. Chem. Eng. Res. Des. 76, 585-593. http://dx.doi.org/10.1205/ 026387698525261.
  21. Qian, Z., Xu, L.B., Cao, H.B., Guo, K., 2009. Modeling study on absorption of CO 2 by aqueous solutions of N-Methyldiethanolamin in rotating packed bed. Ind. Eng. Chem. Res. 48, 9261-9267. http://dx.doi.org/10.1021/ie900894a.
  22. Reddy, K.J., Gupta, A., Rao, D.P., 2006. Process intensification in a higee with split packing. Ind. Eng. Chem. Res. 45, 4270-4277. http://dx.doi.org/10.1021/ ie051382q.
  23. Sang, L., Luo, Y., Chu, G.W., Zhang, J.P., Xiang, Y., Chen, J.F., 2017. Liquid flow pattern transition, droplet diameter and size distribution in the cavity zone of a rotating packed bed: a visual study. Chem. Eng. Sci. 158, 429-438. http://dx.doi.org/ 10.1016/j.ces.2016.10.044.
  24. Yang, K., Chu, G.W., Zou, H.K., Sun, B.C., Shao, L., Chen, J.F., 2011. Determination of the effective interfacial area in rotating packed bed. Chem. Eng. J. 168, 1377- 1382. http://dx.doi.org/10.1016/j.cej.2011.01.100.
  25. Yang, Y., Xiang, Y., Chu, G., Zou, H., Luo, Y., Arowo, M., Chen, J.-F., 2015. A noninvasive X-ray technique for determination of liquid holdup in a rotating packed bed. Chem. Eng. Sci. 138, 244-255. http://dx.doi.org/10.1016/j. ces.2015.07.044.
  26. Yi, F., Zou, H.K., Chu, G.W., Shao, L., Chen, J.F., 2009. Modeling and experimental studies on absorption of CO 2 by Benfield solution in rotating packed bed. Chem. Eng. J. 145, 377-384. http://dx.doi.org/10.1016/j.cej.2008.08.004.
  27. Zhang, L.L., Wang, J.X., Xiang, Y., Zeng, X.F., Chen, J.F., 2011. Absorption of carbon dioxide with ionic liquid in a rotating packed bed contactor: mass transfer study. Ind. Eng. Chem. Res. 50, 6957-6964. http://dx.doi.org/10.1021/ ie1025979.
  28. Zhu, J.S., 1997. Effect of Liquid Atomization on Mass Transfer Intensification in Rotating Packed Bed (Ph.D thesis). Beijing University of Chemical Technology, Beijing.