Academia.eduAcademia.edu

Predictive Regression and Robust Hypothesis Testing: Predictability Hidden by Anomalous Observations

2012, SSRN Electronic Journal

https://doi.org/10.2139/SSRN.2080766

Abstract

Testing procedures for predictive regressions with lagged autoregressive variables imply a suboptimal inference in presence of small violations of ideal assumptions. We propose a novel testing framework resistant to such violations, which is consistent with nearly integrated regressors and applicable to multi-predictor settings, when the data may only approximately follow a predictive regression model. The Monte Carlo evidence demonstrates large improvements of our approach, while the empirical analysis produces a strong robust evidence of market return predictability, using predictive variables such as the dividend yield, the volatility risk premium or, labor income.

References (65)

  1. Amihud, Y., and C.M. Hurvich, 2004. Predictive regressions: a reduced-bias estimation method. Journal of Financial and Quantitative Analysis, 39, 813-841.
  2. Amihud, Y., Hurvich C.M., and Y. Wang, 2008. Multiple-predictor regressions: hypoth- esis testing. The Review of Financial Studies, 22, 413-434.
  3. Amihud, Y., Hurvich C.M., and Y. Wang, 2010. Predictive regression with order-p autoregressive predictors. Journal of Empirical Finance, 17, 513-525.
  4. Andrews, D., 2002. Higher-order improvements of a computationally attractive k-step bootstrap for extremum estimators. Econometrica, 70, 119-162.
  5. Andrews, D., 2004. The block-block bootstrap: improved asymptotic refinements. Econometrica, 72, 673-700.
  6. Andrews, D., and P. Guggenberger, 2010. Application of subsampling, hybrid and size- correction methods. Journal of Econometrics, 158, 285-305.
  7. Ang, A., and G. Bekaert, 2007. Stock return predictability: is it there? The Review of Financial Studies, 20, 651-707.
  8. Bollerslev, T., Marrone, J., Xu, L., and H. Zhou, 2012. Stock return predictability and variance risk premia: statistical inference and international evidence. Working paper.
  9. Bollerslev, T., Tauchen, G., and H. Zhou, 2009. Expected stock returns and variance risk premia. Review of Financial Studies, 22, 4463-4492.
  10. Campbell, J.Y., and R.J. Shiller, 1988. The dividend ratio model and small sample bias: a Monte Carlo study. Economics Letters, 29, 325-331.
  11. Campbell, J.Y., and M. Yogo, 2006. Efficient tests of stock return predictability. Journal of Financial Economics, 81, 27-60.
  12. Camponovo, L., Scaillet, O., and F. Trojani, 2012. Robust subsampling. Journal of Econometrics, 167, 197-210.
  13. Carlstein, E., 1986. The use of subseries methods for estimating the variance of a general statistic from a stationary time series. Annals of Statistics, 14, 1171-1179.
  14. Cavanagh, C., Elliott, and J.H. Stock, (1995). Inference in models with nearly integrated regressors. Econometric Theory 11, 1131-1147.
  15. Choi, I., and T.K. Chue, 2007. Subsampling-based tests of stock-return predictability, Working paper.
  16. Davidson, R., and J. McKinnon, 1999. Bootstrap testing in nonlinear models. Interna- tional Economic Review, 40, 487-508.
  17. Donoho, D. L. and P. J. Huber (1983) The notion of breakdown point, in A Festschrift for Erich L. Lehmann by Bickel, P. J., Doksum, K. A. and J. L. Hodges Jr. (eds.), 157-184, Wadsworth, Belmont, California.
  18. Fama, E., and K. French, 1988. Dividend yields and expected stock returns. Journal of Financial Economics, 22, 3-25.
  19. Gagliardini P., Trojani F., and G. Urga, (2005). Robust GMM tests for structural breaks. Journal of Econometrics, 129, 139-182.
  20. Goetzmann, W.N., and P. Jorion, 1995. A longer look at dividend yields. Journal of Business, 68, No.4.
  21. Genton, M., and A. Lucas, 2003. Comprehensive definitions of breakdown point for independent and dependent observations. Journal of the Royal Statistical Society, Series B, 65, 81-94.
  22. Goncalves, S., and H. White, 2004. Maximum likelihood and the bootstrap for nonlinear dynamic models. Journal of Econometrics, 119, 199-220.
  23. Goyal, A., and I. Welch, 2003. Predicting the equity premium with dividend ratios. Management Science, 49, 639-654.
  24. Hall, P., 1985. Resampling a coverage Stochastic Processes and their Applica- tions, 19, 259-269.
  25. Hall, P., 1988. On symmetric bootstrap confidence intervals. Journal of the Royal Sta- tistical Society, Ser.B, 50, 35-45.
  26. Hall, P., and J. Horowitz, 1996. Bootstrap critical values for tests based on Generalized- Method-of-Moment estimators. Econometrica, 64, 891-916.
  27. Hall, P., Horowitz J., and B.-Y. Jing, 1995. On blocking rules for the bootstrap with dependent data. Biometrika, 82, 561-574.
  28. Hampel, F. R., (1971) A General Qualitative Definition of Robustness, Annals of Math- ematical Statistics, 42, 1887-1896.
  29. Hampel, F. R., Ronchetti, E. M., Rousseeuw, P . J., and W. A. Stahel, 1986. Robust statistics. The approach based on influence functions. Wiley, New York.
  30. Heritier, S., and E. Ronchetti, 1994. Robust bounded-influence tests in general para- metric model. Journal of the American Statistical Association, 89, 897-904.
  31. Hong, H., and O. Scaillet, 2006. A fast subsampling method for nonlinear dynamic models. Journal of Econometrics, 133, 557-578.
  32. Hu, F., and J. Kalbfleisch, 2000. The estimating function bootstrap. Canadian Journal of Statistics, 28, 449-499
  33. Huber, P. J., 1981. Robust Statistics. Wiley, New York.
  34. Huber, P.J., 1984. Finite sample breakdown point of M-and P-estimators. Annals of Statistics, 12, 119-126.
  35. Knez, P.J., and M.J. Ready, 1997. On the robustness of size and book-to-market in cross-sectional regressions. Journal of Finance, 52, 1355-1382.
  36. Kothari, S.P., and J. Shanken, 1997. Book-to-market, dividend yield, and expected market returns: a time series analysis. Journal of Financial Economics, 2, 169-203.
  37. Künsch, H., 1989. The jacknife and the bootstrap for general stationary observations. Annals of Statistics, 17, 1217-1241.
  38. Jansson, M., and M.J. Moreira, 2006. Optimal inference in regression models with nearly integrated regressors. Econometrica, 74, 681-714.
  39. Lettau, M., and S. Ludvigson, 2001. Consumption, aggregate wealth, and expected stock returns. Journal of Finance, 3, 815-849.
  40. Lettau, M., and S. Van Nieuwerburgh, 2007. Reconciling the return predictability ev- idence: in-sample forecasts, out-of-sample forecasts, and parameter instability. Review of Financial Studies, 21, 1607-1652.
  41. Lewellen, J., 2004. Predicting returns with financial ratios. Journal of Financial Eco- nomics, 74, 209-235.
  42. Lucas, A., 1995. Unit root tests based on M-estimators. Econometric Theory, 11, 331- 346.
  43. Lucas, A., 1997. Cointegration testing using pseudolikelihood ratio tests. Econometric Theory, 13, 149-169.
  44. Mancini, L., Ronchetti, E., and F. Trojani, 2005. Optimal conditionally unbiased bounded-influence inference in dynamic location and scale models. Journal of the Amer- ican Statistical Association, 100, 628-641.
  45. Mankiv, N.G., and M.D. Shapiro, 1986. Do we reject too often? Small sample properties of tests of rational expectation models. Economics Letters 20, 139-145.
  46. Mikusheva, A., 2007. Uniform inference in autoregressive models. Econometrica, 75, 1411-1452.
  47. Nelson, C.R., and M.J. Kim, 1993. Predictable stock returns: the role of small sample bias. Journal of Finance, 48, No.2, 641-661.
  48. Politis, D. N., and J. P. Romano, 1994. The stationary bootstrap. Journal of the Amer- ican Statistical Association, 89, 1303-1313.
  49. Politis, D.N., Romano J.P., and M. Wolf, 1999. Subsampling. Springer, New York.
  50. Polk, C., S. Thompson, and T. Vuolteenaho, 2006. Cross-sectional forecast of the equity premium. Journal of Financial Economics, 81, 101-141.
  51. Romano, J. P., and M. Wolf, 2001. Subsampling intervals in autoregressive models with linear time trend. Econometrica, 69, 1283-1314.
  52. Ronchetti, E., and F. Trojani, 2001. Robust inference with GMM estimators, Journal of Econometrics, 101, 37-69.
  53. Rozeff, M., 1984. Dividend yields are equity risk premium. Journal of Portfolio Man- agement, 11, 68-75.
  54. Salibian-Barrera, M., and R. Zamar, 2002. Boostrapping robust estimates of regression. Annals of Statistics, 30, No. 2, 556-582.
  55. Salibian-Barrera, M., Van Aelst, S., and G. Willems, 2006. Principal components anal- ysis based on multivariate MM estimators with fast and robust bootstrap. Journal of the American Statistical Association, 101, 1198-1211.
  56. Salibian-Barrera, M., Van Aelst, S., and G. Willems, 2007. Fast and robust bootstrap. Statistical Methods and Applications, 17, 41-71
  57. Santos, T., and P. Veronesi, 2006. Labor income and predictable stock returns. Review of Financial Studies, 19, 1-44.
  58. Shao, J., and D. Tu, 1995. The jackknife and bootstrap. Springer, New York.
  59. Shiller, R.J., 2000. Irrational Exuberance. Princeton University Press, Princeton, NJ.
  60. Singh, K., 1998. Breakdown theory for bootstrap quantiles. Annals of Statistics, 26, 1719-1732.
  61. Stambaugh, R.F., 1986. Bias in regressions with lagged stochastic regressors. Graduate School of Business, University of Chicago, Working Paper No. 156.
  62. Stambaugh, R.F., 1999. Predictive regressions. Jornal of Financial Economics, 54, 375- 421.
  63. Torous, W., R. Valkanov, and S. Yan, 2004. On predicting stock returns with nearly integrated explanatory variables. Journal of Business, 77, 937-966.
  64. van Binsbergen, J.H., and R.S. Koijen, 2010. Predictive regressions: A present-value approach. Journal of Finance, 65, 1439-1471.
  65. Wolf, M., 2000. Stock returns and dividend yields revisited: a new way to look at an old problem. Journal of Business and Economic Statistics, 18, 18-30.