Academia.eduAcademia.edu

Robust subsampling

2012, Journal of Econometrics

https://doi.org/10.1016/J.JECONOM.2011.11.005

Abstract

We characterize the robustness of subsampling procedures by deriving a formula for the breakdown point of subsampling quantiles. This breakdown point can be very low for moderate subsampling block sizes, which implies the fragility of subsampling procedures, even when they are applied to robust statistics. This instability arises also for data driven block size selection procedures minimizing the minimum confidence interval volatility index, but can be mitigated if a more robust calibration method can be applied instead. To overcome these robustness problems, we introduce a consistent robust subsampling procedure for M-estimators and derive explicit subsampling quantile breakdown point characterizations for MM-estimators in the linear regression model. Monte Carlo simulations in two settings where the bootstrap fails show the accuracy and robustness of the robust subsampling relative to the subsampling.

References (44)

  1. Andrews, D., 2000. Inconsistency of the bootstrap when a parameter is on the boundary of the parameter space. Econometrica, 68, 399-405.
  2. Andrews, D., 2002. Higher-order improvements of a computationally attractive k-step bootstrap for extremum estimators. Econometrica, 70, 119-162.
  3. Andrews, D., and P. Guggenberger 2009a. Hybrid and size-corrected subsample meth- ods. Econometrica, 77, 721-762.
  4. Andrews, D., and P. Guggenberger, 2009b. Incorrect asymptotic size of subsampling pro- cedures based on post-consistent model selection estimators. Journal of Econometrics, 152, 19-27.
  5. Andrews, D., and P. Guggenberger, 2010a. Asymptotic size and a problem with sub- sampling and with the m out of n bootstrap. Econometric Theory, 26, forthcoming.
  6. Andrews, D., and P. Guggenberger, 2010b. Application of subsampling, hybrid and size-correction methods. Journal of Econometrics, forthcoming.
  7. Bickel, P., Gotze, F., and W. van Zwet, 1997. Resampling fewer than n observations: Gains, losses, and remedies for losses. Statistica Sinica, 7, 1-31.
  8. Chernozhukov, V., and I. Fernandez-Val, 2005. Subsampling inference on quantile re- gression processes. Sankhya, 67, 253-276.
  9. Cowell, F. A., and E. Flachaire, 2007. Income distribution and inequality measurement: the problem of extreme values. Journal of Econometrics, 141, 1044-1072.
  10. Datta, S., 1995. On a modified bootstrap for certain asymptotically non-normal statis- tics. Statistics and Probability Letters, 24, 91-98.
  11. Davidson, R., and E. Flachaire, 2007. Asymptotic and bootstrap inference for inequality and poverty measures. Journal of Econometrics, 141, 141-166.
  12. Davidson, R., and J.G. MacKinnon, 1999. Bootstrap testing in nonlinear models. Inter- national Economic Review, 40, 487-508.
  13. Efron, B., 1979. Bootstrap methods: Another look at the jackknife. Annals of Statistics, 7, 1-26.
  14. Efron, B., and R. Tibshirani, 1993. An Introduction to the Bootstrap. New York: Chap- man and Hall.
  15. Gonzalo, J., and M. Wolf, 2005. Subsampling inference in threshold autoregressive mod- els. Journal of Econometrics, 127, 201-224.
  16. Hall, P., 1992. The bootstrap and Edgeworth expansion. New York: Springer-Verlag.
  17. Hall, P., and J. Horowitz, 1996. Bootstrap critical values for tests based on Generalized- Method-of-Moment estimators. Econometrica, 64, 891-916.
  18. Hall, P., and Q. Yao, 2003. Inference in ARCH and GARCH models with heavy-tailed errors. Econometrica, 71, 285-317.
  19. Hampel, F., Ronchetti, E., Rousseeuw, P., and W. Stahel, 1986. Robust statistics. The approach based on influence functions. Wiley, New York.
  20. Heritier, S., and E. Ronchetti 1994, Robust bounded-influence tests in general paramet- ric model. Journal of the American Statistical Association, 89, 897-904.
  21. Hong, H., and O. Scaillet, 2006. A fast subsampling method for nonlinear dynamic models. Journal of Econometrics, 133, 557-578.
  22. Huber, P., 1981. Robust statistics. Wiley, New York.
  23. Kim, T. H., White H., and D. Stone, 2005. Asymptotic and bayesian confidence intervals for Sharpe-style weights. Journal of Financial Econometrics, 3, 315-343.
  24. La Vecchia, D., and F. Trojani, 2010. Infinitesimal robustness for diffusions. Journal of the American Statistical Association, 105, 703-712.
  25. Lee, S., and M. Pun, 2006. On m out of n bootstrapping for nonstandard M-estimation with nuisance parameters. Journal of the American Statistical Association, 101, 1185- 1197.
  26. Linton, O., Massoumi E., and Y. Whang, 2005. Consistent testing for stochastic domi- nance under general sampling schemes. The Review of Economic Studies, 72, 735-765.
  27. Mancini, L., Ronchetti, E., and F. Trojani, 2005. Optimal conditionally unbiased bounded-influence inference in dynamic location and scale models. Journal of the Amer- ican Statistical Association, 100, 628-641.
  28. Loh, W. Y., 1987. Calibrating confidence coefficients. Journal of the American Statistical Association, 82, 155-162.
  29. Mikusheva, A., 2007. Uniform inference in autoregressive models. Econometrica, 75, 1411-1452.
  30. Ortelli, C., and F. Trojani, 2005. Robust efficient method of moments. Journal of Econo- metrics, 128, 69-97.
  31. Politis, D., and J. Romano, 1992. A general theory for large sample confidence regions based on subsamples under minimal assumptions. Technical Report 399, Dept of Statis- tics, Stanford University.
  32. Politis, D., and J. Romano, 1994. Large sample confidence regions based on subsamples under minimal assumptions. Annals of Statistics, 22, 203-2050.
  33. Politis, D., Romano, J., and M. Wolf, 1999. Subsampling. Springer, New York.
  34. Romano, J., and M. Wolf, 2001. Subsampling intervals in autoregressive models with linear time trend. Econometrica, 69, 1283-1314.
  35. Ronchetti, E., and F. Trojani, 2001. Robust inference with GMM estimators, Journal of econometrics, 101, 37-69.
  36. Sakata, S., and H. White, 1998. High breakdown point conditional dispersion estimation with application to S&P500 daily returns volatility. Econometrica, 66, 529-567.
  37. Salibian-Barrera, M., 2006a. The asymptotic of MM-estimators for linear regression with fixed designs. Metrika, 63, 283-294.
  38. Salibian-Barrera, M., 2006b. Bootstrapping MM-estimators for linear regression with fixed designs. Statistics & Probability Letters, 76, 1287-1297.
  39. Salibian-Barrera, M., Van Aelst, S., and G. Willems, 2006. Principal components anal- ysis based on multivariate MM estimators with fast and robust bootstrap. Journal of the American Statistical Association, 101, 1198-1211.
  40. Salibian-Barrera, M., Van Aelst, S., and G. Willems, 2007. Fast and robust bootstrap. Statistical Methods and Applications, 17, 41-71.
  41. Salibian-Barrera, M., and R. Zamar, 2002. Bootstrapping robust estimates of regression. Annals of Statistics, 30, 556-582.
  42. Singh, K., 1998. Breakdown theory for bootstrap quantiles. Annals of Statistics, 26, 1719-1732.
  43. Wu, C.F., 1990. On the asymptotic poperties of the jacknife histogram. Annals of Statis- tics, 18, 1438-1452.
  44. Yohai, V, 1987. High breakdown-point and high efficiency robust estimates for regres- sion. Annals of Statistics, 15, 642-656.