Academia.eduAcademia.edu

Abstract

Monitoring is important for assessing the stability of the ground and for confirming the validity of the design during the construction and operation of structures. The ideal monitoring system for projects in Rock and Geotechnical Engineering would be able to monitor the behavior of small to extensive areas continuously and automatically with high accuracy. In addition, the costs would be low and the system would be easy to handle. Satellite technology has the potential to realize the above monitoring system by combining it with conventional geotechnical instruments. In this paper, satellite technology for displacement monitoring, i.e., GPS and SAR, is firstly outlined and then the concept of spatiotemporal continuous displacement monitoring is introduced. The use of both satellite technology and geotechnical instruments is effective for geotechnical monitoring. Practical applications of GPS for landslide monitoring and collaborative researches using DInSAR with Balkan countries are described.

References (461)

  1. References AIPO (Agenzia Interregionale per il Fiume Po) (2014). Relazione preliminare sugli eventi di Parma e Baganza del 13-14 ottobre 2014. www.agenziapo.it/file/1361/download?token=CPOwCZgp
  2. Arattano M. & Moia F. (1998). Monitoring the propagation of a debris flow along a torrent -Hydrological Sciences Journal, 44 (5), pp. 811-823.
  3. ARPAE-SGSS (ARPAE Servizio Idro Meteo Clima, Servizio Geologico Sismico e dei Suoli) (2016). Rapporto sull'evento alluvionale del 14 settembre 2015. http://ambiente.regione.emilia- romagna.it/geologia/notizie/notizie-2016/rapporto-sullevento- alluvionale-del-14-settembre-2015
  4. Berti M., Genevois R., Simoni A., Tecca P.R. (1999). Field observations of a debris flow event in the Dolomites. Geomorphology 29, 265- 274. Caine N. (1980) -The rainfall intensity duration control of shallow landslides and debris flow. Geografiska Annaler, 62 (1-2), 659-675.
  5. Cannon S.H. & Gartner, J.E. (2005). Wildfire-related debris flow from a hazards perspective. In Debris-flow hazards and related phenomena (pp. 363-385). Springer Berlin Heidelberg.
  6. Cavalli M. & Grisotto S. (2005). GIS-based identification of debris flow dominated channels: application to the upper Avisio Basin (Trento). Servizio Sistemazione Montana della Provincia Autonoma di Trento, Interreg III Project Alpine Space, Work Package 7, Innovative Tools for Information Collection.
  7. Ceriani M., Lauzi, S., Padovan N. (1992). Rainfalls and landslides in the alpine area of Lombardia region, central Alps, Italy. In Proc. Int. Symp. Interpraevent (pp. 9-20).
  8. Ciccarese G., Corsini A., Pizziolo M., Truffelli G. (2016). Debris Flows in Val Nure and Val Trebbia (northern Apennines) during the September 2015 alluvial event In Piacenza Province (Italy). Rendiconti Online della Società Geologica Italiana, 41, 127-130
  9. Ciccarese G., Corsini A., Alberoni P.P., Celano M., Fornasiero A. (2017). Using Weather Radar Data (Rainfall and Lightning Flashes) for the analysis of Debris Flows occurrence in Emilia-Romagna Apennines (Italy). Advancing Culture of Living with Landslides. Springer International Publishing, 4, 437 -448.
  10. Corsini A., Ciccarese G., Diena M., Truffelli G., Alberoni, P.P., Amorati R. (2017). Debris flows in Val Parma and Val Baganza (northern Apennines) during the 12-13th October 2014 alluvial event in Parma province (Italy) -Italian Journal of Engineering Geology and Environment, Special Issue 2017, 29-38.
  11. Corsini A., Ciccarese G., Berti M., Diena M., Truffelli G. (2015). Debris flows in Val Parma and Val Baganza (northern Apennines) during the October 2014 alluvial event in Parma Province (Italy) - Rendiconti Online della Società Geologica Italiana, 35, 85-88.
  12. Crosta G. & Frattini P. (2001). Rainfall thresholds for the triggering of soil slips and debris flows. In Mediterranean Storms 2000 (pp. 463- 488).
  13. Genevois R., Tecca P.R., Berti M., Simoni A. (2000) -Debris flow in the Dolomites: experimental data from a monitoring system -G. Wieczorek, N. Naeser (Eds.), Proceedings, Second International Conference on Debris-flow Hazard Mitigation: Mechanics, Prediction, and Assessment, A.A. Balkema, Rotterdam, pp. 283- 291. Innes J.L. (1983). Debris flows. Progress in physical geography, 7(4), 469-501.
  14. Marchi L., Arattano M., Deganutti A.M. (2002). Ten years of debris- flow monitoring in the Moscardo Torrent (Italian Alps). Geomorphology, 46(1), 1-17.
  15. Marchi L. & D'Agostino V. (2004). Estimation of the debris-flow magnitude in the Eastern Italian Alps Earth Surface Processes and Landforms, 29, pp. 207-220.
  16. Moratti L. & Pellegrini M. (1977).
  17. Associazione Mineraria Subalpina, Anno XIV, n.2, pp. 323-374.
  18. Papani G. & Sgavetti M. (1977) -Aspetti geomorfologici del bacino del T. Ghiara (Salsomaggiore Terme, PR) susseguenti all'evento del 18- 09-1973. Bollettino dell'Associazione Mineraria Subalpina, 14, n. 3-4, 610-628.
  19. Paronuzzi P., Coccolo A., Garlatti G. (1998). Eventi meteorici critici e debris flows nei bacini montani del Friuli. L'Acqua, Sezione I/Memorie, 6, 39-50.
  20. Pavlova I., Jomelli V., Brunstein D., Grancher D., Martin E., Déqué M. (2014) -Debris flow activity related to recent climate conditions in the French Alps: A regional investigation. Geomorphology. 219, 248-259.
  21. Rossetti G. & Tagliavini S. (1977) -L'alluvione ed i dissesti provocati nel bacino del Torrente Enza dagli eventi meteorologici del settembre 1972 (Province di Parma e Reggio Emilia). Bollettino dell'Associazione Mineraria Subalpina, 14, n. 3-4, 561-603.
  22. Wieczorek G.F. (1987). Effect of rainfall intensity and duration on debris flows in central Santa Cruz Mountains, California. Reviews in Engineering Geology, 7, 93-104.
  23. References Clark, I., Fritz, P., 1997. Environmental Isotopes in Hydrogeology, Lewis. Ortolan, Z., 1996. The creation of a spatial engineering-geological model of deep multi-layered landslide (on an example of the Podsused landslide in Zagreb), Unpubl. PhD Thesis, University of Zagreb, 245 p. (in Croatian with an English abstract)
  24. Ortolan, Z., Jurak, V., Ivšić, T., Herak, M., Vukelić, I., 2008. Geotechnical circumstances -Boundary condition for sustainable development of the "Sljeme foothills urbanized zone", Proc. of the Conference 'Development of the Zagreb', Zagreb (Croatia), 273-284. (in Croatian with an English abstract)
  25. Shimano, Y., Yabusaki, S., 2005. Visit to valuable water springs (95) Waters in Slovenia and Croatia, Journal of Groundwater Hydrology, Vol.53, 411-427. (in Japanese with English abstract)
  26. Stanic, B., Nonveiller, E., 1996. The Kostanjek landslide in Zagreb, Engineering Geology, Vol.42, 269-283.
  27. Vrsaljko, D., 1999. The Pannonian Palaeoecology and biostratigraphy of molluscs from Kostanjek -Medvednica Mt., Croatia, Geol. Croat., Vol.52/1, 9-27.
  28. Vrsaljko, D., Pavelić, D., Bajraktarević, Z., 2005. Stratigraphy and palaeogeography of Miocene deposits from the marginal area of Zumberak Mt. and the Samoborsko Gorje Mts. (Northwestern Croatia), Geol. Croat., Vol.58/2, 133-150.
  29. Vrsaljko, D., Pavelić, D., Miknić, M., Brkić, M., Kovacic, M., Hecimovic, I., Hajek-Tadesse, V., Avanic, R., Kurtanjek, N., 2006. Middle Miocene (upper Badenian/Sarmatian) palaeoecology and evolution of the environments in the area of Medvednica Mt. (North Croatia), Geol. Croat., Vol.59/1, 51-63.
  30. Watanabe, N., Krkač, M., Furuya, G., Wang, C., Mihalić Arbanas, S., 2012. Hydrochemical characteristics of groundwaters from the Kostanjek landslide in Croatia, Proc. of 2nd Project Workshop on Risk Identification and Land-Use Planning for Disaster Mitigation of Landslides and Floods, Rijeka (Croatia), 2011, 14-16.
  31. References Baily E, McCabe BA, Goggins J, Kieran P (2014) Real time monitoring and performance of retaining structures. In: Proceedings of Civil Engineering Research in Ireland (CERI 2014), Belfast, pp. 229-234
  32. Benjamim CVS, Bueno BS, Zornberg JG (2007) Field monitoring evaluation of geotextile-reinforced soil-retaining walls. Geosynthetic International, 2007, 14, No. 2 pp. 100-118
  33. Carrubba P, Moraci N, Montanelli F (1999) Instrumented soil reinforced retaining wall: analysis of measurements. In: Proceedings of Geosynthetics '99, Boston, Mass., April 1999. Industrial Fabrics Association International, Roseville, Minn., pp. 921-934.
  34. Koerner RM, Koerner GR (2011) Recommended layout of instrumentation to monitor potential movement of MSE walls, berms and slopes. GRI White Paper #19, Geosynthetic Institute, Folsom, PA Lienhart W, Monsberger CM, Kalenjuk S, Woschitz H (2018) High resolution monitoring of retaining walls with distributed fibre optic sensors and mobile mapping system. 7 th Asia-Pacific Workshop on Structural Health Monitoring, November 12-15, 2018 Hong Kong SAR, P.R. China
  35. Rainieri C, Dey A, Fabbrocino G, Santucci de Magistris F (2010) Monitoring and modeling of flexible retaining wall. In: Proceedings of the 3 rd Asia-Pacific Workshop on Structural Health Monitoring, January 2010
  36. Segalini A, Carini C (2013) Underground landslide displacement monitoring: a new MMES based device. In: Landslide Science and Practice, Volume 2: Early Warning, Instrumentation and Monitoring; Margottini C, Canuti P, Sassa K, Eds; Springer: Berlin/Heidelberg, Germany, 2013
  37. Segalini A, Chiapponi L, Pastarini B, Carini C (2014) Automated inclinometer monitoring based on Micro Electro-Mechanical System technology: Applications and verification. In: Landslide Science for Safer Geoenvironment; Sassa K, Canuti P, Yin Y, Eds; Springer: Cham, Switzerland, 2014; pp 595-600
  38. Stirling DM, Chandler JH, Clark JS (1992) Monitoring of one of Europe's largest retaining walls using oblique aerial photography. International Archives of Photogrammetry and Remote Sensing, 29(5): 701-708
  39. References Bavec M (2013) Geološka karta Slovenije 1:1.000.000 [Kartografsko gradivo] = Geological map of Slovenia 1:1.000.000, Ljubljana: Geološki zavod Slovenije.
  40. Gams I (1998) Pokrajinsko ekološka sestava Slovenije. In: Gams I, Vrišer I (eds.) Geografija Slovenije. Slovenska matica v Ljubljani. (ISBN 961-213-060-4). pp. 214-243. (in Slovene)
  41. Gariano S L, Brunetti M T, Iovine G, Melillo M, Peruccacci S, Terranova O, Vennari C, Guzzetti F (2015) Calibration and validation of rainfall thresholds for shallow landslide forecasting in Sicily, southern Italy. Geomorphology. Vol. 228: 653-665.
  42. Haiden T, Kann A, Wittmann C, Pistotnik G, Bica B, Gruber C (2010) The Integrated Nowcasting through Comprehensive Analysis (INCA) System and Its Validation over the Eastern Alpine Region. Weather and Forecasting. 26(2): 166-183.
  43. Jemec Auflič M, Šinigoj J (2019) Validation of the Slovenian national landslide forecast system using contingency matrices. In: European Geosciences Union, General Assembly 2019, Vienna, Austria, 7-12 April 2019, (Geophysical research abstracts, ISSN 1607-7962, 73 Vol. 21). München: European Geosciences Union, 2019. URL: https://meetingorganizer.copernicus.org/EGU2019/EGU2019- 13338.pdf [Last accessed: 25.06.2019].
  44. Jemec Auflič M, Šinigoj J, Krivic M, Podboj M, Peternel T, Komac M (2016) Landslide prediction system for rainfall induced landslides in Slovenia (Masprem), Geologija. 59(2): 259-271.
  45. Jordanova G (2019) Analysis of temporal rainfall patterns for landslide occurrences in eastern Slovenia (in Slovene language). Master's thesis, Faculty of Natural Sciences and Engineering, University of Ljubljana, Ljubljana, Slovenia.
  46. Komac, M et al. (2013) Projekt: sistem zgodnjega opozarjanja za primer nevarnosti proženja zemeljskih plazov -MASPREM; DP1: Model verjetnosti pojavljanja zemeljskih plazov za območje Slovenije. Ljubljana: Geološki zavod Slovenije. 32p. (in Slovene)
  47. Placer L (1999) Structural meaning of the Sava folds = Strukturni pomen Posavskih gub, Geologija. 41: 191-221.
  48. Pristov N, Cedilnik J, Jerman J, Strajnar B (2012) Priprava numerične meteorološke napovedi ALADIN-SI, Vetrnica. pp. 17-23. (In Slovene)
  49. Šinigoj J, Jemec Auflič M, Kumelj Š, Peternel T, Krivic M, Vegan J, Zakrajšek M, Prkić Požar N, Podboj M, Šinigoj M, Jordanova G (2018) Nadgradnja sistema za obveščanje in opozarjanje v primeru proženja zemeljskih plazov v RS -MASPREM 3: končno poročilo. Ljubljana: Geološki zavod Slovenije. 175p. (In Slovene)
  50. References Blikra LH (2012) The Åknes rockslide, Norway. In: Landslides: Types, Mechanisms and Modeling. Clague JJ, Stead D (eds). Cambridge. 323-335.
  51. Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Landslide investigation and mitigation (Special Report / Transportation Research Board, National Research Council; 247).
  52. Gajić-Čapka M, Zaninović K (2008) Climate of Croatia. In: Climate atlas of Croatia 1961-1990 and 1971-2000. Zaninović K (ed). Croatian Meteorological and Hydrological Service, Zagreb. 15-17.
  53. Haque U, Blum P, Da Silva PF, Andersen P, Pilz J, Chalov SR, Malet J-P, Jemec Auflič M, Andres N, Poyiadji E, Lamas PC, Zhang W, Peshevski I, Pétursson HG, Kurt T, Dobrev N, García-Davalillo JC, Halkia M, Ferri S, Gaprindashvili G, Engström J, Keellings D (2016) Fatal landslides in Europe. Landslides. 13(6): 1545-1554.
  54. Krkač M (2015) A phenomenological model of the Kostanjek landslide movement based on the landslide monitoring parameters. PhD Thesis, University of Zagreb (in Croatian).
  55. Krkač M, Špoljarić D, Bernat S, Mihalić Arbanas S (2017) Method for prediction of landslide movements based on random forests. Landslides. 14(3): 947-960.
  56. Massey CI, Petley DN, McSaveney MJ (2013) Patterns of movement in reactivated landslides. Engineering Geology. 159: 1-19.
  57. Michoud C, Bazin S, Blikra LH, Derron M-H, Jaboyedoff M (2013) Experiences from site-specific landslide early warning systems. 13: 2659-2673.
  58. Mihalić Arbanas S, Arbanas Ž, Krkač M (2013) Comprehensive Landslide Monitoring System: The Kostanjek Landslide Case Study, Croatia. In: ICL Landslide Teaching Tools. Sassa K, He B, McSaveney M, Osamu N (eds). International Consortium on Landslides, Kyoto. 158-168.
  59. Ortolan Ž, Pleško J (1992) Repeated photogrammetric measurements at shaping geotechnical models of multi-layer landslides. Rudarsko-geološko-naftni zbornik. 4: 51-58.
  60. Pecoraro G, Calvello M, Piciullo L (2019) Monitoring strategies for local landslide early warning systems. Landslides. 16(2): 213-231.
  61. Petley DN (2012) Global patterns of loss of life from landslides. Geology. 40(10): 927-930.
  62. Skempton AW (1985) Residual strength of clays in landslide, folded strata and the laboratory. Geotechnique. 35(1): 3-18.
  63. Stanić B, Nonveiller E (1996) The Kostanjek landslide in Zagreb. Engineering Geology. 42: 269-283.
  64. References Nikolic T., Spago A., Sahinagic-Isovic M., Hajdarevic A., Cecez M., Helebic A., Spago S. (2018) Project of recovery landslide in Donje Paprasko. University "Dzemal Bijedić", Civil engineering faculty with the institute for project and testing building materials, October 2018. Mostar (BIH), 120-2-2-14/18.
  65. Neziric O., Properties and photos from landslide DonjePaparasko in different periods of a move, (2017-2018), Civil protect agency of Jablanica Municipality.
  66. Bhat DR, Wakai A, Kotani K: A comparative study of two newly developed numerical models to understand the creeping behaviour of landslides Proc of the 20 th International Summer Symposium, Japan, 2018, pp 101-102.
  67. Bhat DR, Wakai A, Kotani K: A finite element approach to understand the creeping behaviour of large-scale landslides Proc of the 19 th International Summer Symposium, Japan, 2017, pp 9-10.
  68. Bhat DR, Yatabe R: A Regression Model for Residual State Creep Failure, Proc of the 18 th International Conference on Soil Mechanics and Geotechnical Engineering, USA, 2016, pp 707-711.
  69. Bhat DR, Bhandary NP, Yatabe R: Creeping Displacement Behaviour of Clayey Soil in A New Creep Test Apparatus, Geotechnical Special Publication, ASCE, 2014, Vol 236, pp 275-285.
  70. Conte E, Donato A, Troncone A: A finite element approach for the analysis of active slow-moving landslides, Landslides, Vol 11, No 4, 2014, pp 723-731.
  71. Huvaj N, Maghsoudloo A: Finite Element Modeling of Displacement Behaviour of a Slow-Moving Landslide, Geo-Congress 2013, USA, 2013, pp 670-679.
  72. Ishii Y, Ota K, Kuraoka S, Tsunaki R: Evaluation of slope stability by finite element method using observed displacement of landslide, Landslides, 2012, Vol 9, No 3, pp 335-348.
  73. Picarelli L, Urciuoli G, Russo C: Effect of groundwater regime on the behaviour of clayey slopes, Can Geotech J, 2004, Vol 41, No 3, pp 467-484.
  74. Stark TD, Hussain M: Drained Shear Strength Correlations for Slope Stability Analyses, J of Geotech Eng, 2013, Vol 139, No6, pp 853- 862. Ter-Stepanian G: On the long term stability of slopes, Nor Geotech Inst, 1963, Vol 52, pp 1-14.
  75. Terzaghi K: Mechanism of landslide In application of Geology to Engineering Practice, Berkey Volume, Geological Society of America, USA, 1950, pp 83-123.
  76. Vulleit L, Hutter K: Viscous-type sliding laws for landslides, Can Geotech J, 1988, Vol 25, No 3, pp 467-477.
  77. Yin ZY, Chang CS, Karstunen M, Hicher PY: An anisotropic elastic- viscoplastic model for soft clays, Int J of Sol and Struc, 2010, Vol 47, pp 665-677.
  78. References Agano River District Office: Technical Information on Takisaka landslide, unpublished material, 2016.
  79. FukuzonoT.: A new method for predicting the failure time of slope, Proceedings of the 4th International conference and field workshop on landslides, Tokyo, 1985, pp.145-150.
  80. Japan Landslide Society: Landslides in Japan, 7th edition, 2012. Japan Landslide Society: Landslides in Japan, 6th edition, 2002. Japan Landslide Society: Landslides in Japan, 5th edition, 1996.
  81. Kitamura S.: Landslides of Green Tuff area in Northeastern Region, Landslide Engineering, Vol.18, No.3, 1992, pp.27-35, (in Japanese). Ministry of Land, Infrastructure and Transport: Overview of the Sediment Disaster Prevention Act, 2014, (in Japanese). www.mlit.go.jp/river/sabo/sinpoupdf/gaiyou.pdf
  82. Mizuno M.: Application of High-Resolution SAR Satellite Images to Large Scale Landslide Disaseters, 2015, unpublished material.
  83. Suzuki I: Geomorphology of Niigata, Daiichi-Insatsu, 2005, pp.27-35, (in Japanese).
  84. Saito M.: Forecasting time of occurrence of a slope failure, Proceedings of the 6th international conference on soil mechanics and foundation engineering, Montreal, 1965, pp.537-541.
  85. Terado T.: The Distribution of Landforms Caused by Large-scale Mass Movement on Shikoku Island and Their Regional Characteristics, The Memoirs of the Geological Society of Japan, No.28, Landslides, 1986, pp.221-232.
  86. Yatabe R. et.al.: Comparison of strength of sliding surface clay between landslides in Tertiary and landslides in Fractured zone, Report of Disaster Prvention Research Insitute. Kyoto University: Study on Creeping Mechanism of Tertiary Landslides and Crystalline-Schist Landslides, 2000, pp.95-102. (in Japanese)
  87. References Abdoun T, Danisch L, Ha D (2006) Advanced sensing for real-time monitoring of geotechnical systems. Geotechnical Special Publication.
  88. Awaludin L, Dhewa, O A (2018) Low cost sensor node device for monitoring landslides. Indonesian Journal of Electronics and Instrumentation Systems (IJEIS). 8(2): 201-210.
  89. Benedetti E, Dermanis A Crespi M (2017) On the feasibility to integrate low-cost MEMS accelerometers and GNSS receivers. Advances in Space Research. 59: 2764-2778.
  90. Biagi L, Grec F C, Negretti M (2016) Low-cost GNSS receivers for local monitoring: experimental simulation, and analysis of displacements. Sensors. 16: 1-16.
  91. Cascini L, Fornaro, G, Peduto D (2010) Advanced low-and full- resolution DInSAR map generation for slow-moving landslide analysis at different scales. Engineering Geology. 112: 29-42.
  92. Carlà T, Tofani V, Lombardi L, Raspini F, Bianchini S, Bertolo D, Thuegaz P, Casagli N (2019) Combination of GNSS, satellite InSAR, and GBInSAR remote sensing monitoring to improve the understanding of a large landslide in high alpine environment. Geomorphology. 335: 62-75.
  93. Cina A, Piras M., Bendea H I (2014) Monitoring of landslides with mass market GPS: an alternative low cost solution. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XL-5/W3. The Role of Geomatics in Hydrogeological Risk, 27 -28 February 2013, Padua, Italy.
  94. Ćmielewski B, Kontny B, Ćmielewski K (2013) Use of low-cost MEMS technology in early warning system against landslide threats. Acta Geodynamica et Geomaterialia. 10(4): 485-490.
  95. Gümüş K, Selbesoğlu M O (2019) Evaluation of NRTK GNSS positioning methods for displacement detection by a newly designed displacement monitoring system. Measurement. 142: 131-137.
  96. Hanto D, Widiyatmoko B, Hermanto B, Puranto P, Handoko L T (2011) Ral-time inclinometer using accelerometer MEMS.
  97. Kumar S D, Naidu V J (2015) Landslide detection and monitoring using mems and zigbee. SSRG International Journal of Electronics and Communication Engineering (SSRG-IJECE). 2(5): 30-34.
  98. Leng Ooi G, Siang Tan P, Lin M L, Wang, K L, Zhang Q, Wang Y H (2016) Near real-time landslide monitoring with the smart soil particles. Japanese Geotechnical Society Special Publication. 2/28: 1031-1034.
  99. Lo Iacono F, Navarra G, Oliva M (2017) Structural monitoring of "Himera" viaduct by low-cost MEMS sensors: characterization and preliminary results. Meccanica. 52: 3211-3236.
  100. Popit T (2016) Transport mechanisms and depositional processes of Quaternary slope deposit in Rebrnice area. Doctoral thesis. Ljubljana Univ., Ljubljana, Slovenia.
  101. Raucoules D, de Michele M, Malet J P, Ulrich P (2013) Time-variable 3D ground displacements from high-resolution synthetic aperture radar (SAR), application to La Valette landslide (South French Alps). Remote Sensing of Environment. 139: 198-204.
  102. Tran D T, Nghia T D, Dinh-Chinh N, Duc-Tuyen T (2015) Development of a rainfall-triggered landslide system using wireless accelerometer network. International Journal of Advancements in Computing Technology. 7(5): 14-24.
  103. Schlögel R, Doubre C, Malet J P, Masson F (2015) Landslide deformation monitoring with ALOS/PALSAR imaginary: A D-InSAR geomorphological interpretation method. Geomorphology. 231: 314-330.
  104. Strozzi T, Klimeš J, Frey H, Caduff R, Huggel C, Wegmüller, Rapre A C (2018) Satelite SAR interferometry for the improved assessment of the state of activity of landslides: A case study from the Cordilleras of Peru. Remote Sensing of Environment. 217: 111- 125. Wang K L, Hsieh Y M, Lin J T, His M H (2017) Sliding behavior monitoring of a deep-seated landslide with differential interferometric synthetic aperture radar, mems tiltmeter and unmanned vehicle images. 34 th International Symposium on Automation and Robotics in Construction (ISARC). 1045-1051.
  105. Yang Z, Tian H, Shao W, Lei X (2017) A multi-source early warning system of MEMS based wireless monitoring for rainfall-induced landslides. Applied Sciences 7: 1-12.
  106. References Detailed geological report for the transmission line OH L 110 kW from Babica up to Saranda. A.L.T.E.A & Geostudio 2000, 2014
  107. Geological & geotechnical reports for road Orikum-Shen Eliza Bridge. A.L.T.E.A & Geostudio 2000, 2018-2019. Geological reports prepared for landslide area at Shushica river valley. A.L.T.E.A & Geostudio 2000, 2009-2016. Geological study for road from Vlora up to Saranda. A.L.T.E.A & Geostudio 2000, 2000-2005
  108. Geological Hazards, Fred G. Bell. Teylor & Francis, 2006
  109. Rock Slope Engineering Civil and Mining, Duncan C.W, Christopher W.M. Taylor & Francis, 2009
  110. The Slope Stability, 2nd Edition, Bromhead E.N. Teylor & Francis, 2006
  111. References Blašković I (1999) Tectonics of part of the Vinodol Valley within the model of the continental crust subduction. Geologia Croatica. 52(2): 153-189.
  112. Cruden D M, Varnes D J, (1996) Landslide types and processes. Turner, A K, Schuster, R L (eds.): Landslides, Investigation and Mitigation. Transportation Research Board, Special Report 247, Washington D.C., USA (ISBN 0-309-06151-2). 36-75.
  113. Đomlija P, (2018) Identification and classification of landslides and erosion phenomena using the visual interpretation of the Vinodol Valley digital elevation model (in Croatian). Dissertation. University of Zagreb, Faculty of Mining, Geology and Petroleum Engineering.
  114. Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an update. Landslides. 11: 167-194.
  115. Popit T, Verbovšek, T (2013) Analysis of surface roughness in the Sveta Magdalena paleo-landslide in the Rebrnice area. RMZ - Materials and Geoenvironment. 60:197-204.
  116. Popit, T, Supej, B, Kokalj, Ž, Verbovšek, T (2016) Comparison of methods for geomorphometric analysis of surface roughness in the Vipava valley. Geodetski vestnik, 60/2, 227-240.
  117. Selby M J (1993) Hillslope materials and processes. Oxford University Press, Oxford (ISBN 0-19-874183-9). 320-355.
  118. Soeters R, van Westen C J, (1996) Slope instability recognition, analysis, and zonation. Turner, A K, Schuster, R L (eds.): Landslides, Investigation and Mitigation. Transportation Research Board, Special Report 247, Washington D.C., USA (ISBN 0-309- 06151-2). 129-177.
  119. Van Den Eeckhaut M, Poesen J, Verstraeten G, Vanacker V, Moeyersons J, Nyssen J, van Beek L P H (2005) The effectiveness of hillshade maps and expert knowledge in mapping old deep - seated landslides. Geomorphology. 67: 351-363.
  120. References Battistini A, Segoni S, Manzo G, Catani F, Casagli N (2013) Web data mining for automatic inventory of geohazards at national scale. Applied Geography. 43:147-158.
  121. Battistini A, Rosi A, Segoni S, Lagomarsino D, Catani F, Casagli N (2017) Validation of landslide hazard models using a semantic engine on online news. Applied geography. 82: 59-65.
  122. Baum R L, Godt J W (2010) Early warning of rainfall-induced shallow landslides and debris flows in the USA. Landslides. 7(3): 259-272.
  123. Caine N (1980) The rainfall intensity-duration control of shallow landslides and debris flows. Geografiska annaler: series A, physical geography. 62(1-2): 23-27.
  124. Canli E, Mergili M, Thiebes B, Glade T (2018) Probabilistic landslide ensemble prediction systems: lessons to be learned from hydrology. Natural Hazards and Earth System Sciences. 18(8): 2183-2202.
  125. Chae B G, Park H J, Catani F, Simoni A, Berti M (2017) Landslide prediction, monitoring and early warning: a concise review of state-of-the-art. Geosciences Journal. 21(6): 1033-1070.
  126. Devoli G, Tiranti D, Cremonini R, Sund M, Boje S (2018) Comparison of landslide forecasting services in Piedmont (Italy) and Norway, illustrated by events in late spring 2013. Natural Hazards Earth System Sciences. 18(5): 1351-2018.
  127. Froude M J, Petley D (2018) Global fatal landslide occurrence from 2004 to 2016. Natural Hazards and Earth System Sciences. 18: 2161-2181.
  128. Guzzetti F, Peruccacci S, Rossi M, Stark CP (2007) Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorog Atmos Phys. 98:239-267.
  129. Hong Y, Adler R F, Huffman G (2007) An experimental global prediction system for rainfall-triggered landslides using satellite remote sensing and geospatial datasets. IEEE Transactions on Geoscience and Remote Sensing. 45(6). 1671-1680.
  130. Jemec Auflič M, Šinigoj J, Krivic M, Podboj M, Peternel T, Komac M (2016) Landslide prediction system for rainfall induced landslides in Slovenia (Masprem). Geologija. 59(2): 259-271.
  131. Kirschbaum D B, Adler R, Hong Y, Kumar S, Peters-Lidard C, Lerner- Lam A (2012). Advances in landslide nowcasting: evaluation of a global and regional modeling approach. Environmental Earth Sciences. 66(6): 1683-1696.
  132. Krøgli I K, Devoli G, Colleuille H, Boje S, Sund M, Engen I K (2018) The Norwegian forecasting and warning service for rainfall-and snowmelt-induced landslides. Nat Hazards Earth Syst Sci. 18: 1427-1450. Lagomarsino D, Segoni S, Fanti R, Catani F (2013) Updating and tuning a regional-scale landslide early warning system. Landslides. 10: 91-97.
  133. Lagomarsino D, Segoni S, Rosi A, Rossi G, Battistini A, Catani F, Casagli N (2015) Quantitative comparison between two different methodologies to define rainfall thresholds for landslide forecasting. Natural Hazards and Earth System Sciences. 15(10): 2413-2423.
  134. Lagomarsino D, Tofani V, Segoni S, Catani F, Casagli N (2017) A tool for classification and regression using random forest methodology: applications to landslide susceptibility mapping and soil thickness modeling. Environmental Modeling & Assessment. 22(3): 201-214.
  135. Mercogliano P, Segoni S, Rossi G, Sikorsky B, Tofani V, Schiano P, Catani F, Casagli N (2013) Brief communication: A prototype forecasting chain for rainfall induced shallow landslides. Nat. Hazards Earth Syst. Sci. 13: 771-777.
  136. Miller S, Brewer T, Harris N (2009) Rainfall thresholding and susceptibility assessment of rainfall-induced landslides: application to landslide management in St Thomas, Jamaica. Bulletin of Engineering Geology and the Environment. 68(4): 539.
  137. Piciullo L, Calvello M, Cepeda J (2018) Territorial early warning systems for rainfall-induced landslides. Earth-science reviews. 179: 228-247.
  138. Reichenbach P, Rossi M, Malamud B, Mihir M, Guzzetti F (2018) A review of statistically-based landslide susceptibility models. Earth-science reviews. 180: 60-91.
  139. Rosi A, Lagomarsino D, Rossi G, Segoni S, Battistini A, Casagli N (2015) Updating EWS rainfall thresholds for the triggering of landslides. Natural Hazards. 78(1): 297-308.
  140. Rosi A, Peternel T, Jemec-Auflič M, Komac M, Segoni S, Casagli N (2016) Rainfall thresholds for rainfall-induced landslides in Slovenia. Landslides. 13(6): 1571-1577.
  141. Segoni S, Rossi G, Rosi A, Catani F (2014) Landslides triggered by rainfall: A semi-automated procedure to define consistent intensity-duration thresholds. Computers & Geosciences: 63: 123-131.
  142. Segoni S, Lagomarsino D, Fanti R, Moretti S, Casagli N (2015a) Integration of rainfall thresholds and susceptibility maps in the Emilia Romagna (Italy) regional-scale landslide warning system. Landslides. 12:773-785.
  143. Segoni S, Battistini A, Rossi G, Rosi A, Lagomarsino D, Catani F, Moretti S, Casagli N (2015b) Technical note: an operational landslide early warning system at regional scale based on space- time-variable rainfall thresholds. Nat Hazards Earth Syst Sci 15:853-861. https://doi.org/10.5194/nhess-15-853-2015
  144. Segoni S, Tofani V, Lagomarsino D, Moretti S (2016) Landslide susceptibility of the Prato-Pistoia-Lucca provinces, Tuscany, Italy. Journal of Maps. 12(sup1): 401-406.
  145. Segoni S, Piciullo L, Gariano S L (2018a) A review of the recent literature on rainfall thresh-olds for landslide occurrence. Landslides. 15:1483-1501
  146. Segoni S, Tofani V, Rosi A, Catani F, Casagli N (2018b) Combination of rainfall thresholds and susceptibility maps for dynamic landslide hazard assessment at regional scale. Front Earth Sci 6:85. https://doi.org/10.3389/feart.2018.00085
  147. Stähli M, Sättele M, Huggel C, McArdell B W, Lehmann P, Van Herwijnen A, Berne A, Schleiss M, Ferrari A, Kos A, Or D, Springman S M (2015) Monitoring and prediction in early warning systems for rapid mass movements. Nat Hazards Earth Syst Sci. 15: 905-917.
  148. Tiranti D, Nicolò G, Gaeta A R (2018) Shallow landslides predisposing and triggering factors in developing a regional early warning system. Landslides. https://doi.org/10.1007/s10346-018-1096-8
  149. Tofani V, Bicocchi G, Rossi G et al. (2017) Soil characterization for shallow landslides modeling: a case study in the Northern Apennines (Central Italy). Landslides. 14:755-770.
  150. Wei L W, Huang C M, Chen H, Lee C T, Chi C C, Chiu C L (2018) Adopting the I3-R24 rainfall index and landslide susceptibility for the establishment of an early warning model for rainfall-induced shallow landslides. Nat. Hazards Earth Syst. Sci. 18:1717-1733.
  151. References Arbanas Ž, Mihalić Arbanas S, Vivoda M, Peranić J, Dugonjić Jovančević S, Jagodnik V (2014) Identification, monitoring and simulation of landslides in the Rječina River Valley, Croatia. Proceedings of the SATREPS Workshop on Landslide Risk Assessment Technology, 29-30 July 2014. Hanoi, Vietnam. pp. 200-213.
  152. Arbanas Ž, Mihalić Arbanas S, Vivoda Prodan M, Peranić J, Sečanj M, Bernat Gazibara S, Krkač M (2017) Preliminary investigations and numerical simulations of landslide reactivation. Proceedings of World Landslide Forum 4, Advancing Culture of Living with Landslides, Vol. 2: Advances in Landslide Science. Mikoš M, Tiwari B, Yin Y, Sassa K (eds). Springer, Cham. pp. 649-657.
  153. Bernat S, Mihalić Arbanas S, Krkač M (2014a) Landslides triggered in the continental part of Croatia by extreme precipitation in 2013. Proceedings of the XII IAEG Congress, Engineering Geology for Society and Territory, Vol. 2, Landslide Processes, 15-19 September 2014. Springer, Heidelberg. pp. 1599-1603.
  154. Duncan J M (1996) State of the art: limit equilibrium and finite- element analysis of slopes. Journal of Geotechnical Engineering. 122(7): 577-596.
  155. Eckersley J D (1990) Instrumented laboratory flowslides. Geotechnique. 40(3): 489-502.
  156. Fan G, Zhang J, Wu J Yan K (2016) Dynamic response and dynamic failure mode of a weak intercalated rock slope using a shaking table. Rock Mechanics and Rock Engineering. 49(8). 3243-3256.
  157. Feng T, Mi H, Scaioni M, Qiao G, Lu P, Wang W, Tong X, Li R (2016) Measurement of Surface Changes in a Scaled-Down Landslide Model Using High-Speed Stereo Image Sequences. Photogrammetric Engineering and Remote Sensing 82(7): 547- 557.
  158. Frodella W, Gigli G, Morelli S, Lombardi L, Casagli N (2017) Landslide Mapping and Characterization through Infrared Thermography (IRT): Suggestions for a Methodological Approach from Some Case Studies. Remote Sensing. 9(12): 1-25.
  159. Herak D, Sović I, Cecić I, Živčić M, Dasović I, Herak M (2017) Historical Seismicity of the Rijeka Region (Northwest External Dinarides, Croatia) -Part I: Earthquakes of 1750, 1838 and 1904 in the Bakar Epicentral Area. Seismological Research Letters. 88(3): 904-915.
  160. Herak M, Živčić M, Sović I, Cecić I, Dasović I, Stipčević J, Herak D (2018) Historical Seismicity of the Rijeka Region (Northwest External Dinarides, Croatia) -Part II: The Klana Earthquakes of 1870. Seismological Research Letters. 89(4): 1524-1536.
  161. Iserloh T, Fister W, Seeger M, Willger H, Ries J B (2012) A small portable rainfall simulator for reproducible experiments on soil erosion. Soil and Tillage Research. 124: 131-137.
  162. Lora M, Camporese M, Saladin P (2016) Design and performance of a nozzle-type rainfall simulator for landslide triggering experiments. Catena. 140: 77-89.
  163. Mihalić Arbanas S, Arbanas Ž (2015) Landslides -A guide to researching landslide phenomena and processes. In Handbook of Research on Advancements in Environmental Engineering. Gaurina-Međimurac N (ed). IGI Global, Hershey, 474-510.
  164. Mihalić Arbanas S, Sečanj M, Bernat Gazibara S, Krkač M, Begić H, Džindo A, Zekan S, Arbanas Ž (2017) Landslides in the Dinarides and Pannonian Basin -from the largest historical and recent landslides in Croatia to catastrophic landslides caused by Cyclone Tamara (2014) in Bosnia and Herzegovina. Landslides. 14(6): 1861-1876.
  165. Petley, D (2012) Global patterns of loss of life from landslides. Geology. 40(10): 927-930.
  166. Take W A, Bolton M D, Wong P C P, Yeung F J (2004) Evaluation of landslide triggering mechanisms in model fill slopes. Landslides 1: 17-184.
  167. Wang G, Sassa K (2001) Factors affecting rainfall-induced flowslides in laboratory flume tests. Geotechnique. 51(7): 587-599.
  168. Wang K, Lin M (2011) Initiation and displacement of landslide induced by earthquake -a study of shaking table model slope test. Engineering Geology. 122(1-2): 106-114.
  169. Wieczorek G F, Snyder J B (2009) Monitoring slope movements. Geological Monitoring, Young R and Norby L (eds). Boulder, Colorado, Geological Society of America, pp 245-271.
  170. Zanuta A, Baldi P, Bitelli G, Cardinalli M, Carrara A (2006) Qualitative and quantitative photogrammetric techniques for multi-temporal landslide analysis. Annals of Geophysics. 49(4/5): 1067-1080.
  171. References ASTM D4015-15 (2015) Standard test methods for Modulus and damping of soils by fixed-base resonant column devices. ASTM International ASTM D4318 (2010) Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International ASTM D854-14 (2014) Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer Blašković I (1999) Tectonics of Part of the Vinodol Valley Within the Model of the Continental Crust Subduction. Geol Croat 52:153-189. doi: 10.4154/GC.1999.13
  172. Brinkgreve RBJ (2006) Plaxis: Finite Element Code for Soil and Rock Analyses: 2D-Version 8.5:(User's Guide)
  173. Cavallari A (2014) Soil testing using a Chirp RC. In: 20th IMEKO TC4 Symposium on Measurements of Electrical Quantities: Research on Electrical and Electronic Measurement for the Economic Upturn, Together with 18th TC4 International Workshop on ADC and DCA Modeling and Testing, IWADC 2014. pp 195-199
  174. Cavallari A (2016) Resonant column testing challenges. In: 1st IMEKO TC4 International Workshop on Metrology for Geotechnics, MetroGeotechnics 2016. pp 149-156
  175. Controls-Group (2019) Resonant column, Soil mechanics testing equipment, Controls. https://www.controls- group.com/eng/soil-mechanics-testing-equipment/resonant- column.php. Accessed 23 Jul 2019
  176. Cundall PA (2011) FLAC Manual: A Computer Program for Fast Lagrangian Analysis of Continua. Itasca Consult Gr Inc Đomlija P (2018) Identification and classification of landslides and erosion phenomena using the visual interpretation of the Vinodol Valley digital elevation model (in Croatian). Faculty of Geology, Mining and Petroleum Engineering, University of Zagreb EN/ISO 14688-2 (2017) Geotechnical investigation and testing - Identification and classification of soil -Part 2: Principles for a classification. Geneva, CH EN ISO 14688-1 (2002) Geotechnical investigation and testing. Identification and classification of soil. Identification and description. Geneva, CH
  177. Hardin BO (1978) The nature of stress-strain behavior for soils. In: From Volume I of Earthquake Engineering and Soil Dynamics-- Proceedings of the ASCE Geotechnical Engineering Division Specialty Conference, June 19-21, 1978, Pasadena, California. Sponsored by Geotechnical Engineering Division of ASCE
  178. Hardin BO, Black WL (1968) Vibration Modulus of Normally Consolidated Clay. J Soil Mech Found Div 94:353-369
  179. Hardin BO, Drnevich VP (1972) Shear Modulus and Damping in Soils: Design Equations and Curves. J Soil Mech Found Div 98:
  180. Hardin BO, Richart JFE (1963) Elastic wave velocities in granular soils. ASCE Proc J Soil Mech Found Div Hashash YMA, Musgrove MI, Harmon JA, et al (2016) DEEPSOIL 6.1, user manual. Urbana, IL, Board Trust Univ Illinois Urbana- Champaign Herak M, Allegretti I, Herak D, et al (2011) Map of the earthquake areas of the Republic of Croatia for Tp = 95 and Tp = 475 years(in Croatian). Državna Geod uprava (DGU), Zagreb
  181. Krahn J (2004) Dynamic Modeling with QUAKE / W. Alberta Kramer SL (1996) Geotechnical Earthquake Engineering, 1st edn. New York Lanzo G, Vucetic M, Doroudian M (1997) Reduction of shear modulus at small strains in simple shear. J Geotech Geoenvironmental Eng 123:1035-1042
  182. Pajalić S, Đomlija P, Jagodnik V, Arbanas Ž (2017) Diversity of Materials in Landslide Bodies in the Vinodol Valley, Croatia. In: Mikoš M, Vilímek V, Yin Y, Sassa K (eds) Advancing Culture of Living with Landslides. Springer International Publishing, Cham, pp 507-516
  183. Prakash S (1981) Soil Dynamics prakash, 1 st. McGraw-Hill, New York Prelogović E, Blašković I, Cvijanović D, et al (1981) Seizmotectonic characteristics of the Vinodol Region (in Croatian). Geološki Vjesn 33:1-5
  184. Saxena SK, Reddy KR (1989) Dynamic moduli and damping ratios for Monterey No.0 sand by resonant column tests. Soils Found 29:37-51. doi: 10.3208/sandf1972.29.2_37
  185. Towhata I (2008) Geotechnical Earthquake Engineering. Springer Berlin Heidelberg Verruijt A (2009) An Introduction to Soil Dynamics. Springer Netherlands Vucetic M, Dobry R (1991) Effect of Soil Plasticity on Cyclic Response. J. Geotech. Eng. 117:89-107
  186. Yoshimi Y, Richart FE, Prakash S (1978) Soil dynamics and its application to foundation engineering. State-of-the-art report: Proc 9th International Conference on Soil Mechanics and Foundation Engineering, Tokyo, 1977, V2, P605--650. In: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. p A28
  187. References Miklin Ž., Podolszki L., Martinčević, J. (2012): Geological and engineering-geological investigations in Brodsko Brdo area - expanded Edition. 4. Internacionalni naučno-stručni skup Građevinarstvo -nauka i praksa. Zbornik radova 2079-2085 , 3-7 Mart 2012. Žabljak, Crna Gora.
  188. Miklin, Ž., Sokolić, Ž., Podolszki, L., Ofak, J. (2016): Prognoza tehničko financijskih pokazatelja za nestabilne padine, korištenjem postoječih podataka i prospekcije terena. 7 savjetovanje Hrvatskog geotehničkog društva s međunarodnim sudjelovanjem. 7th conference of Croatian Geotehnical Society whit international participation. 161-167. Varaždin 10-12. 11.2016. Hrvatska.
  189. Miklin, Ž., Novosel, T., Sokolić, Ž. Šoban, S. (2018). Geološka i inženjerskogeološka istraživanja područja padinskog dijela urbanizirane zone Nove Gradiške; 1:5000. Br. 57/18, arhiv HGI Službeni glasnik Grada Zagreba, godina XLVI, broj 8, od 17. svibnja 2001. godine References Aljinović D, Jurak V, Mileusnić M, Slovenec D, Presečki F (2010) The origin and composition of flysch deposits as an attribute to the excessive erosion of the Slani Potok valley (''Salty Creek''). Geologia Croatica. 63(3): 313-322.
  190. Blašković I (1999) Tectonics of part of the Vinodol Valley within the model of the continental crust subduction. Geologia Croatica. 52(2): 153-189.
  191. BS 1377-2 (2010) Methods of test for soils for civil engineering purposes. Classification tests.
  192. Collotta T, Cantoni R, Pavesi U, Ruberl E, Moretti P C (1989) A correlation between residual friction angle, gradation and the index properties of cohesive soils. Géotechnique. 39(2): 343-346.
  193. Đomlija P, Bočić N, Mihalić Arbanas S (2017) Identification of geomorphological units and hazardous processes in the Vinodol Valley. Abolmasov B, Marjanović M, Đurić U (eds.): Proceedings of the 2nd Regional Symposium on Landslides in the Adriatic- Balkan Region. University of Belgrade, Faculty of Mining and Geology, Belgrade. 109-116.
  194. Đomlija P (2018) Identification and classification of landslides and erosion phenomena using the visual interpretation of the Vinodol Valley digital elevation model (in Croatian). Dissertation. University of Zagreb, Faculty of Mining, Geology and Petroleum Engineering.
  195. Holtz RD, Kovacs WD, Sheahan TC (2011) An introduction to geotechnical engineering. Pearson, Upper Saddle River, USA (ISBN 978-0-13-031721-6).
  196. Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an update. Landslides. 11: 167-194.
  197. Jurak V, Slovenec D, Mileusnić M (2005) Excessive flysch erosion- Slani Potok. Excursion guidebook of the 3rd Croatian geological congress. Opatija, Croatia. 51-55.
  198. Kovačević MS, Jurić-Kaćunić D (2014) European soil classification system for engineering purposes. Građevinar. 66(09): 801-810.
  199. Maček M, Petkovšek A, Arbanas Ž, Mikoš M (2017) Geotechnical aspects of landslides in flysch in Slovenia and Croatia. Abolmasov B, Marjanović M, Đurić U (eds.): Proceedings of the 2nd Regional Symposium on Landslides in the Adriatic-Balkan Region. University of Belgrade, Faculty of Mining and Geology, Belgrade. 25-31.
  200. Pajalić S, Đomlija P, Jagodnik V, Arbanas Ž (2017) Diversity of Materials in Landslide Bodies in the Vinodol Valley, Croatia. Mikoš M, Vilímek V, Yin Y, Sassa K (eds.): Advancing Culture of Living with Landslides, Volume 5. Springer, Berlin (ISBN 978-3- 319-53483-1). 507-516.
  201. Polidori E (2009) Reappraisal of the activity of clays. Activity chart. Soils and foundations, 49(3), 431-441. doi:10.3208/sandf.49.431
  202. Prša M (2018) Testing the clay activity of the colluvial deposits of the Dubračina River Basin (in Croatian). BSc thesis. University of Rijeka, Faculty of Civil Engineering.
  203. Skempton AW (1953) The Colloidal Activity of Clays. Proceedings of the 3 rd International Conference on Soil Mechanics and Foundation Engineering, Volume 1. 57-61.
  204. Skempton AW (1985) Residual strength of clays in landslides, folded strata and the laboratory. Geotechnique. 35(1): 3-18.
  205. Toševski A (2018) Susceptibility of the Dubracina River Basin to the superficial geodynamical processes (in Croatian). Dissertation. University of Zagreb, Faculty of Mining, Geology and Petroleum Engineering.
  206. Vivoda Prodan M, Mileusnić M, Mihalić Arbanas S, Arbanas Ž (2017) Influence of weathering processes on the shear strength of siltstones from a flysch rock mass along the northern Adriatic coast of Croatia. Bulletin of Engineering Geology and the Environment. 76(2), 695-711. doi:10.1007/s10064-016-0881-7
  207. References Design guidelines according to EC7, Ilov G., , 2011 Eurocode 7 Geotechnical design Young Geotechnical Engineers Conference (EYGEC), Durham, UK, Markov I., Totsev A. Influence of dynamic load on the ground anchors bearing capacity,Proceedings of the 24th European 2015 12th international symposium on landslides, Napoli, Italy Markov I., Totsev A Expiremental and Experimental and Numerical Modeling of Anchors Under Seismic Conditions, ,2016
  208. References Bogunović S., (1984): Metodološke osnove za izradu prostornih planova, Institut za arhitekturu, urbanizam i prostorno planiranje Arhitektonskog fakulteta u Sarajevu, Sarajevo.
  209. Burrough P.A, i McDonnell R.A., (2006): Principi geografskih informacionih sistema, Građevinski fakultet Univerziteta u Beogradu, Beograd.
  210. Babajić, E., Kikanović, N., Mandžić, K., Ibrahimović, A., Hodžić, S. (2018): Radne upute za izradu karte podložnosti na klizanje. Project:Transnational advanced management of land use risk through landslide susceptibility maps design. Interreg IPA-CBC. HR-BA-MNE 59. RGGF Tuzla, pp 1-19.
  211. Babajić, E., Kikanović, N., Mandžić, K., Ibrahimović, A., Hodžić, S. (2018): Tumač za kartu podložnosti na klizanje za općinu Žepče. Project:Transnational advanced management of land use risk through landslide susceptibility maps design. Interreg IPA-CBC. HR-BA-MNE 59. RGGF Tuzla, pp 1-22.
  212. Babajić, E.(2018), Kikanović, N., Mandžić, K., Ibrahimović, A., Hodžić, S. : Methodology of landslide susceptibility maps creation in small scale on municipality Prozor-Rama example, Journal of Faculty of Mining, Geology and Civil Engineering Tuzla ISSN: UDK: Vol. 2013/1, pp. 01-08.
  213. Castellanos Abella, E.A. & Van Westen, C.J., (2007): Generation of landslide risk index map for Cuba using spatial multi-criteria evaluation. Landslides, 4: 311-325.
  214. Cascini, L. (2008): Applicability of landslide susceptibility and hazard zoning at different scales. Engineering geology, 102: 164-177.
  215. Corominas, J., Van Westen, C.J., Frattini, P., Cascini, L., Malet, J.P., Fotopoulou, S., Catani, F., Van Den Eeckhaut, M., Mavrouli, O., Agliardi, F., Pitilakis, K., Winter, M.G., Pastor, M., Ferlisi, S., Tofani, V., Hervas, J., Smith, J.T. (2014) ): Recommendations for the quantitative analysis of landslide risk. Bulletin of Engineering Geology and the Environment, 73 (2): 209-263.
  216. Chacon, J., Irigaray, C., Fernandez, T., Hamdouni, R.E. (2006): Engineering geology maps: landslides and geographical information systems. Bulletin of Engineering Geology and the Environment, 65 (4): 341-411.
  217. Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E., Savage, W.Z. on behalf of the JTC-1 Joint Technical Committee on Landslides and Engineered Slopes (2008): Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Engineering Geology, 102: 85-98.
  218. Hervás, J., Günther, A., Reichenbach, P., Malet, J.-P., Van Den Eeckhaut, M., (2010): Harmonised approaches for landslide susceptibility mapping in Europe. Proceeding of the International Conference Mountain Risks: Bringing Science to Society. CERG, 501-505.
  219. Ibrahimović A., Mandžić K.,(2013): Sanacija klizišta, Tuzla BiH, d.o.o. Mikroštampa.
  220. Lima, P., Steger, S., Glade, T., Tilch, N., Schwarz, L., Kociu, A., (2017): Landslide Susceptibility Mapping at National Scale: A First Attempt for Austria. Mikos, M., Tiwari, B., Yin, Y., Sassa, K. (eds.): Advancing Culture of Living with Landslides. WLF 2017, 943-951.
  221. Mandžić. E., (2001): Hazard i risk. Autorized lectures. Faculty of Mining, Geology and civil Engineernig, University of Tuzla. Marinović-Uzelac A., (2001): Prostorno planiranje, "Dom i svijet", Zagreb. Mandžić K., Ibrahimović A., Babajić E., Kikanović N., (2016-2019): Project "Transnational advanced management of land use risk through landslide susceptibility maps design". Interreg IPA-CBC.
  222. HR-BA-MNE 59, Faculty of Mining, Geology and Civil Engineering (Official Gazette of the Federation of Bosnia and Herzegovina, 33/07 and 84/10)
  223. Official Gazette of the Federation of Bosnia and Herzegovina, 63/04; 50/07; 84/10), Varnes, D.J. & IAEG Commission on Landslides and Other Mass Movements on Slopes (1984): Landslides hazard zonation: a review of principles and practice, UNESCO, Paris-France.
  224. References Čačković I., 2005: Stabilnost kosina i potporne konstrukcije.Univerzitet u Tuzli, 1-401Tuzla. ISBN 9958-628-11-2.
  225. Ferhatbegović Z., Gušić I., 2015: Elaborat o inženjerskoj prospekciji klizišta na području općin Sapna (I faza).
  226. Ferhatbegović Z., Gušić I., 2015: Elaborat o geomehaničkim ispitivanjim tla za sanaciju klizišta u Jukićima-općina Sapna
  227. Redžepović R., Ferhatbegović Z.,2014 : Živjeti na klizištu. Transkulturna psihosocijalna obrazovna fondacija-TPO fondacija, Sarajevo. ISBN 978-9958-9990-7-9
  228. Redžepović R., Ferhatbegović Z.,2001 : Kako živjeti na klizištu.Specijalno izdanje Zavoda za geologiju, Sarajevo. ISBN 9958-9351-1-2
  229. Suljić N., 2010: Potporne konstrukcije. Univerzitet u Tuzli, 1-246, Tuzla.ISBN 978-9958-628-15-3.
  230. Vrabac S., Pašić-Škripić D., Ferhatbegović Z., 2005 : Geologija za građevinare. Univerzitet u Tuzli, 1-222, Tuzla. ISBN 9958-609-41-X References Čačković I., 2005: Stabilnost kosina i potporne konstrukcije.Univerzitet u Tuzli, 1-401Tuzla. ISBN 9958-628- 11-2. Ferhatbegović Z., Husić J., 2019: Elaborat o geomehaničkim ispitivanjima tla za sanacije klizišta "Lisovići" u mjestu Lisovići u općini Srebrenik.
  231. Redžepović R., Ferhatbegović Z.,2014 : Živjeti na klizištu. Transkulturna psihosocijalna obrazovna fondacija-TPO fondacija, Sarajevo. ISBN 978-9958-9990-7-9
  232. Redžepović R., Ferhatbegović Z.,2001 : Kako živjeti na klizištu.Specijalno izdanje Zavoda za geologiju, Sarajevo. ISBN 9958-9351-1-2
  233. Suljić N., 2010: Potporne konstrukcije. Univerzitet u Tuzli, 1-246, Tuzla.ISBN 978-9958-628-15-3.
  234. Vrabac S., Pašić-Škripić D., Ferhatbegović Z., 2005 : Geologija za građevinare. Univerzitet u Tuzli, 1-222, Tuzla. ISBN 9958-609- 41-X References Hideaki MARUI, (2003), Slope Movement Disasters Caused by Snow Melting in Alpine countries, Ann. Rep. of Res. Inst. For Hazards in Snowy Areas, Niigata Univ., No.25
  235. Hiroyuki YOSHIMATSU, Masanobu OTSUKA, Keiji MIKAI, Nobuaki KATO,(2010),An estimation of ground water fluctuation of landslide area and effect evaluation of drainage prevention work by using sparse measured data, J. of the Landslide Soc.,Vol.47,No.2
  236. Hiroyuki YOSHIMATSU, Wataru SAGARA, Takami KANNO,(2012),Prediction of long term fluction in ground water level of landslide in a snowy district, J. of the Landslide Soc.,Vol.49,No.3
  237. Yoshinori ITO, Wataru SAGARA, RyousukeTSUNAKI, Kousei YAMABE, Hideaki MARUI, (2018), Predicting the groundwater level fluctution in landslide areas by means of genetic algorithm, J. of the Landslide Soc., Vol.55, No.3
  238. Akca, E. and Leventeli, Y. (2019). Study of the landslide on highway between Antalya and Fınıke. International Symposium on Advanced Engineering Technologies, 2-4 May, Kahramanmaras, Turkey, 1446-1450.
  239. GEO5 (2019). Geotechnical Software GEO5 for Windows, Spring Update Version, Czech Republic.
  240. Kalafatçıoğlu, A. (1973). Geology of the western part of the Gulf of Antalya. Bulletin of the Mineral Researchand Exploration, 81: 82- 131. Leventeli, Y. and Yilmazer. (2005). Geological and geotechnical database for motorways. Geosound, 46, 191-208. (In Turkish)
  241. ROCSCIENCE, (2009). RocLab Software Version:1.007. www.rocscience.com, RocscienceInc. Toronto Canada.
  242. Sonmez, H. and Ulusay, R. (2002). A discussion on the Hoek-Brown failure criterion and suggested modifications to the criterion verified by slope stability case studies. Yerbilimleri,Bulletin of Earth Sciences Application and Research Centre of Hacettepe University,26(1):77-99.
  243. Senel, M., Dalkilic, H., Gedik, I., Serdaroglu, M., Bolukbasi, S., Metin, S., Esenturk, K., Bilgin, A. Z., Uğuz, M. F., Korucu, M., Ozgul, N. (1992). Geology of the areas between Egirdir-Yenisar-Bademli- GedizveGeriş-Koprulu (Isparta-Antalya). TPAO Report, No:3132, MTA Report No:9390 (unpublished), Ankara. (in Turkish)
  244. Senel, M., Gedik, I., Dalkilic, H., Serdaroglu, M., Bilgin, A. Z., Uguz, M. F., Bolukbasi, A.S., Korucu, M., Ozgul, N. (1996). Stratigraphy of the autochthonous and allacton units in the east of the Isparta bend (Western Taurus).Bulletin of the Mineral Researchand Exploration, 118, 111-160. (In Turkish)
  245. Yilmazer, I., Yilmazer, O., Ozkok, D., Gokcekus, H. (1999). Introduction to geotechnical design. Bilisim Pres., Ankara, 210 p. (In Turkish)
  246. Yuksel Project (2018). Landslide modeling and design geotechnical project report between Km: 74 + 500-74 + 720 and 74 + 100 (unpublished), Ankara.
  247. References Bartelt P, Buehler Y, Christen M, Deubelbeiss Y, Graf C, McArdell B W (2013) RAMMS-rapid mass movement simulation, A modelling system for debris flows in research and practice, user manual v1.5, debris flow, Institute for Snow and Avalanche Research SLF, pp 126. Christen M, Bartelt P, Kowalski J (2010b) Back calculation of the In den Arelen avalanche with RAMMS: Interpretation of model results. Annals of Glaciology 51(54): 161-168.
  248. Christen M, Bartelt P, Kowalski J, Stoffel L (2007) Calculation of dense snow avalanches in three-dimensional terrain with the numerical simulation program RAMMS. Differential Equations.vol. Proceeding, pp. 709-716.
  249. Christen M, Kowalski J, Bartelt P (2010a) RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Regions Science and Technology, 63, 1-14.
  250. Frank F, Mc Ardell BW, Oggier N, Baer P, Christen M, Vieli A (2017) Debris flow modeling at Meretschibach and Bondasca catchment, Switzerland: sensitivity testing of field-data-based entrainment model. Natural Hazards and Earth System Sciences 17: 801-815.
  251. Hungr O (1995) A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Canadian Geotechnical Journal 32 ( 4):610-623.
  252. Iverson RM (1997) The physics of debris flows. Reviews of Geophysics 35 (3): 245-296.
  253. Jakob M, Hungr O (2005) Debris-flow hazards and related phenomena. Blondel, P. Springer Praxis Book in Geophysical Sciences, Chichester, UK .1723 p.
  254. Krušić, J., Andrejev, K.,Andrejev, K., Abolmasov, B, Marjanović, M.(2017) Preliminary results of the Selanac debris flow modelling in RAMMS -a case study., Proceeding of the 3rd Regional Symposium on Landslides in the Adriatic-Balkan Region, Ljubljana 2017, 1, pp. 95 -100, 978-961-6498-58-6, Ljubljana, Slovenia, 11. -13. Oct, 2017
  255. Rickenmann D (1999) Empirical relationships for debris flows. Natural Hazards 19: 47-77.
  256. Savage SB, Hutter K (1989) The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics 199 (1): 177-215.
  257. Schraml K, Thomschitz B, Mcardell BW, Graf C, Kaitna R (2015) Modeling debris-flow runout patterns on two alpine fans with different dynamic simulation models. Natural Hazards and Earth System Sciences 15 (7):1483-1492.
  258. Sosio R, Crosta GB, Hungr O (2008) Complete dynamic modeling calibration for the Thurwieser rock avalanche (Italian Central Alps). Engineering Geology 100 (1-2): 11-26.
  259. Takahashi T (2007) Debris Flow: Mechanics, Prediction and Countermeasures. Annual Review of Fluid Mechanics 13 (1): 57- 77. Voellmy A (1955) Über die Zerstörungskraft von Lawinen. Schweizerische Bauzeitung 73: 212-285
  260. Wu W (2015) Recent advances in modeling landslides and debris flows. Springer Series in Geomechanics and Geoengineering, Published by Springer-Verlag
  261. Bishop, A W (1955) The Use of the Slip Circle in the Stability Analysis of Slopes. Geotechnique, Vol. 5, pp 7 -17.
  262. Cruden D M, Varnes D J (1996) Landslide type and processes. Landslides: Investigation and Mitigation. Turner A K and Schuster R L (eds). National Academy Press, Washington, D.C. Special report 247, pp. 36-75.
  263. Hungr O, Lerouei S, Picarelli L (2014) The Varnes classification of landslide types, an update. Landslides 11 (2), pp. 167-194. doi 10.1007/s10346-013-0436-y
  264. Hutchinson J N (1977) The assesment of the effectivness of corrective measures in relation to geological conditions and types of slope movement, Bulletin IAEG, 16: pp. 131-155. doi 10.1007/BF02591469
  265. Mihalić Arbanas S, Arbanas Ž (2015) Landslides -A guide to researching landslide phenomena and processes. In Handbook of Research on Advancements in Environmental Engineering. Gaurina-Međimurac N (ed). IGI Global, Hershey, 474-510.
  266. Mihalić Arbanas S, Sečanj M, Bernat Gazibara S, Krkač M, Begić H, Džindo A, Zekan S, Arbanas Ž (2017) Landslides in the Dinarides and Pannonian Basin -from the largest historical and recent landslides in Croatia to catastrophic landslides caused by Cyclone Tamara (2014) in Bosnia and Herzegovina. Landslides. 14(6): 1861-1876.
  267. Popescu M E (2001) A suggested method for reporting landslide remedial measures. Bull Eng Geol Env. 60 (1): pp. 69-74 . doi 10.1007/s100640000084
  268. Savić D, Dozet S (1984) Basic geological map SFRJ 1:100.000. Sheet Delnice L33-90. Geological institute Zagreb, Geological institute Ljubljana, Federal geological institute Beograd (in Croatian).
  269. Slide2 (2018) Tutorials of Slide 2018, 2D limit equilibrium analysis of slope stability, Version 2018 8.024. Rocscience, Toronto, Canada.
  270. References Anon. (2011) Recovery of the Rječina River Channel. Croatian State Archive, Rijeka (unpublished)
  271. Arbanas Ž, Mihalić S, Grošić M, Dugonjić S, Vivoda M (2010) Landslide Brus, translational block sliding in flysch rock mass. In: Zhao J, Labiouse V, Dudt J-P, Mathier J-P (eds) Rock mechanics in civil and environmental engineering. Taylor & Francis Group, London, pp 635-638.
  272. Arbanas Ž, Dugonjić S, Benac Č (2013) Causes of small scale landslides in flysch deposits of Istria, Croatia. In Margottini C, Canuti P, Sassa K (eds) Landslide science and practice, Volume 1: Landslide inventory and susceptibility and hazard zoning. Springer-Verlag Berlin Heidelberg, pp 221-226.
  273. Arbanas Ž, Mihalić Arbanas S, Vivoda M, Peranić J, Dugonjić Jovančević S, Jagodnik V (2014) Identification, monitoring and simulation of landslides in the Rječina River Valley, Croatia. In: Sassa K, Khang QD (eds) Proceedings of the SATREPS workshop on landslide risk assessment technology. International Consortium on Landslides, Kyoto, pp 200-213
  274. Bergant S, Tišljar J, Šparica M (2003) Eocen carbonates and flysch deposits of the Pazin basin. In: Vlahović I, Tišljar J (eds) Field trip guidebook of the 22nd IAS meeting of sedimentology. Croatian Geological Survey, Zagreb, pp 57-64
  275. Bernat S, Mihalić Arbanas S, Krkač M (2014a) Landslides triggered in the continental part of Croatia by extreme precipitation in 2013. In: Lollino G, Giordan D, Crosta G, Corominas, Azzam R, Wasowski J, Sciarra N (eds) Engineering geology for society and territory, volume 2: landslide processes. Springer, Heidelberg, pp 1599- 1603
  276. Bernat S, Mihalić Arbanas S, Krkač M (2014b) Inventory of precipitation triggered landslides in the winter of 2013 in Zagreb (Croatia, Europe). In: Sassa K, Canuti P, Yin Y (eds) Landslide science for a safer Geoenvironment, Volume 2: Methods of landslide studies. Springer-Verlag Berlin Heidelberg, pp 829-836
  277. Bernat Gazibara S, Krkač M, Sečanj M, Begić H, Mihalić Arbanas S (2017a) Extreme rainfall events and landslide activation in Croatia and Bosnia and Herzegovina. In: Proceedings of the 3rd Regional Symposium on Landslides in the Adriatic-Balkan Region. Ljubljana, Slovenia. Bernat Gazibara S, Krkač M, Sečanj M, Mihali ć Arbanas S, (2017b) Identification and mapping of shallow landslides in the City of Zagreb (Croatia) using the LiDAR-based terrain model. In: Mikoš M, Tiwari B, Yin Y, Sassa K (eds) Advancing culture of living with landslides, volume 2: advances in landslide science. Springer International Publishing AG, Switzerland, Cham, pp 1093-a.
  278. Bernat Gazibara S, Mihalić Arbanas S, Krkač M, SečanjM (2017c) Catalog of precipitation events that triggered landslides in northwestern Croatia. In: Abolmasov B, Marjanović M, Đurić U (eds) Proceedings of the 2nd Regional Symposium on landslides in the Adriatic-Balkan Region. University of Belgrade, Faculty of Mining and Geology, Belgrade, pp 103-107
  279. Bernat Gazibara S, Krkač M, Mihalić Arbanas S (2019) Verification of historical landslide inventory maps for the Podsljeme area in the City of Zagreb using LiDAR-based landslide inventory. Rudarsko- geološko-naftni zbornik, 44: 45-58.
  280. Blašković I (1999) Tectonics of part of the Vinodol Valley within the model of the continental crust subduction. Geologia Croatica 52(2):153-189
  281. Corominas J, van Westen C, Frattini P, Cascini L, Malet JP, Fotopoulou, S, Catani F, Van Den Eeckhaut M, Mavrouli O, Agliardi F, Pitilakis K, Winter MG, Pastor M, Ferlisi S, Tofani V, Hervas J, Smith JT (2013): Recommendations for the quantitative analysis of landslide risk. Bulletin of Engineering Geology and the Environment. 73(2): 209-263.
  282. DHMZ (Meteorological and Hydrological Service) (2013) Meterological and hydrological bulletin 3/2013 (in Croatian)
  283. DHMZ (Meteorological and Hydrological Service) (2018) Meterological and hydrological bulletin 3/2018 (in Croatian)
  284. Dugonjić J, Arbanas Ž (2012) Recent landslides on the Istrian Peninsula, Croatia. Nat Hazards 62:1323-1338.
  285. Dugonjić Jovančević S (2013) Landslide hazard assessment on flysch slopes. PhD Dissertation, Faculty of Civil Engineering, University of Rijeka, p 199 (in Croatian)
  286. Đomlija P, Bernat S, Mihalić Arbanas S, Benac Č (2014) Landslide inventory in the area of Dubračina River Basin (Croatia) In: Sassa K, Canuti P, Yin Y (eds) Landslide Science for a Safer Geoenvironment, Vol. 2. Methods of Landslide Studies, Springer International Publishing, 837-842.
  287. Đomlija P (2018) Identification and classification of landslides and erosion phenomena using the visual interpretation of the Vinodol Valley Digital Elevation Model. Dissertation. University of Zagreb, Faculty of Mining, Geology and Petroleum Engineering
  288. Đomlija P, Jagodnik V, Arbanas Ž, Mihalić Arbanas S (2019) Landslide types in the Slani Potok gully, Croatia. Geologia Croatica (in press).
  289. Fell R, Corominas, J, Bonnard C, Cascini L, Leroi E, Savage, WZ (on behalf of the JTC-1 Joint Technical Committee on Landslides and Engineered Slopes) (2008a) Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Engineering Geology, 102: 85-98.
  290. Fell R, Corominas, J, Bonnard C, Cascini L, Leroi E, Savage, WZ (on behalf of the JTC-1 Joint Technical Committee on Landslides and Engineered Slopes) (2008b) Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning. Engineering Geology, 102: 99-111.
  291. Grošić M, Bernat S, Arbanas Ž, Mihali ć Arbanas S, Matjašić I, Vidović D (2014) Instabilities of open pit cut slopes: case studiy from the torine quarry in Croatia. In: Mihalić Arbanas S, Arbanas Ž (eds) Proceedings of the 1st Regional Symposium on landslides in the Adriatic-Balkan Region. Landslide and Flood Hazard Assessment. Croatian Landslide Group, Zagreb, pp 153-158
  292. Gunther A, Van Den Eeckhaut M, Malet JP, Reichenbach P, Hervas J (2013) European landslide susceptibility map (ELSUS1000) version 1 methodology. Technical note, European soil portal, 3p
  293. IGU, International Geographical Union (1968) The unified key to the detailed geomorphologial map of the world, 1: 25.000 -1: 50.000. Folia geografica, series geographica-physica 2, Krakow.
  294. McKee TB, Doeksen NJ, Kleist J (1993) The relationship of drought frequency and duration on timescales. In Proceedings of the 8th conference of applied climatology, 17-22 January, Anaheim,CA. American Meteorology Society: Boston MA: 179-184.
  295. Mihalić S, Arbanas Ž, Krkač M, Dugonjić S (2011) Analysis of sliding hazard in wider area of Brus landslide. In: Anagnostpoulos A, Pachakis M, Tsatsamifos C (eds) Proceedings of the 15th European conference on soil mechanics & geotechnical engineering: geotechnics of hard soils-weak rocks. IOS Press, Amsterdam, pp 1377-1382
  296. Mihalić Arbanas S, Krkač M, Bernat S (2016) Application of advanced technologies in landslide research in the area of the City of Zagreb (Croatia, Europe). Geologia Croatica, 69(2): 231-243.
  297. Mihalić Arbanas S, Krkač M, Bernat S, Komac M, Sečanj M, Arbanas Ž (2017a) A comprehensive landslide monitoring system: the Kostanjek landslide, Croatia. In: Sassa K et al (eds) Landslide dynamics: ISDR-ICL landslide interactive teaching tools. Springer, Heidelberg, pp 1-20 (In press)
  298. Mihalić Arbanas S, Sečanj M, Bernat Gazibara S, Krkač M, Arbanas Ž (2017b) Identification and mapping of the Valići Lake landslide (Primorsko-Goranska County, Croatia). In: Abolmasov B, Marjanović M, Đurić U (eds) Proceedings of the 2nd Regional Symposium on landslides in the Adriatic-Balkan Region. University of Belgrade, Faculty of Mining and Geology, Belgrade, pp 197-202
  299. Oštrić M, Yamashiki Y, Takara K, Takahashi T (2011) Possible scenarios for Rjecina River catchment-on the example of Grohovo landslide. Ann Disaster Prev Res Inst 54B:1-7
  300. Pajalić S, Đomlija P, Jagodnik V, Arbanas Ž (2017) Diversity of Materials in Landslide Bodies in the Vinodol Valley, Croatia. In Mikoš M, Vilimek V, Yin Y, Sassa K (eds) Advancing Culture of Living with Landslides, Volume 5, Springer, 507-516
  301. Panagos P, Van Liedekerke M, Jones A, Montanarella L (2012) European soil data Centre: response to European policy support and public data requirements. Land Use Policy 29(2):329-338. https://doi.org/10.1016/j.landusepol.2011.07.003
  302. Podolzski L, Pollak D, Gulam V, Miklin Ž (2015) Development of Landslide Susceptibility Map of Croatia. In Lollino G, Giordan D, Crosta G, Corominas, Azzam R, Wasowski J, Sciarra N (eds) Engineering geology for society and territory, volume 2: landslide processes. Springer, Heidelberg, pp 947-950
  303. Schmid SM, Bernoulli D, Fügenschuh B, Matenco L, Schefer S, Schuster R, Tischler M, Ustaszewski K (2008) The Alpine- Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss J Geosci 101(1):139-183.
  304. Soeters R, van Westen CJ (1996) Slope instability Recognition, analysis and zonation. In Turner AK, Schuster RL (eds.) Landslides, investigation and mitigation (Transportation Research Board, National Research Council, Special Report ;
  305. Washington D.C., USA: National Academy Press. pp. 129 -177.
  306. Toševski, A. (2018): Susceptibility of the Dubračina river basin to the superficial geodynamical processes. Dissertation. University of Zagreb, Faculty of Mining, Geology and Petroleum Engineering
  307. van Westen CJ, Van Asch TWJ, Soeters R (2005) Landslide hazard and risk zonation; why is it still so difficult? Bulletin of Engineering geology and the Environment 65 (2): 167-184.
  308. Vivoda Prodan M (2016) The influence of weathering process on residual shear strength of fine grained lithological flysch components. PhD Dissertation, Faculty of Civil Engineering, University of Rijeka, p 197 (in Croatian)
  309. Vivoda Prodan M, Arbanas Ž (2016) Weathering influence on properties of siltstones from Istria, Croatia. Adv Mater Sci Eng 2016:1-15, Article ID 3073202.
  310. Vivoda M, Benac Č, Žic E, Đomlija P, Dugonjić Jovančević S (2012) Geohazards in the Rječina Valley in the past and present. Hrvatske vode 20:105-116 (in Croatian)
  311. Vlahović I, Tišljar J, Velić I, Matičec D (2005) Evolution of the Adriatic carbonate platform: Palaeogeography, main events and depositional dynamics. Palaeogeogr, Palaeoclimatol, Palaeocol 220:333-360
  312. References CE marking (2019) Retrieved from: https://ec.europa.eu/growth/single-market/ce-marking_de European Union. (2018). Flexible kits for retaining debris flows and shallow landslides (EAD document Nr. 340020-00-1062). Retrieved from: https://ec.europa.eu/growth/sectors/construction/product- regulation/european-assessment_en Geobrugg (2016): Ringnetzbarrieren aus hochfestem Stahldraht: Die ökonomische Lösung gegen Murgänge, Schweiz.
  313. Geobrugg (2017): Software Manual: DEBFLOW Debris flow protection. Switzerland. IBU Report: Kytzia S. (2008), CO2 footprint of slope stabilisation methods: the TECCO System (mesh) compared to shotcrete solution. Institute for civil and environmental engineering, Rapperswil, Switzerland.
  314. Luis-Fonseca, R., Raïmat Quintana, C., Albalate Jimenez, J., Fernández Rodriguez, J., 2010: Protección
  315. Volkwein A. (2004): Numerische Simulation von flexiblen Steinschlagschutzsystemen, Dissertation ETHZ, Schweiz.
  316. Wendeler C. (2008): Murgangrückhalt in Wildbächen -Grundlagen zu Planung und Berechnung von flexiblen Barrieren, Dissertation ETHZ, Schweiz.
  317. Wendeler, C. (2008). DEBFLOW® [Online software]. Retrieved from: https://www.geobrugg.com/en/Welcome-to-myGeobrugg- 79860.htmlintegriert
  318. References Furuya,G., Hasegawa, M., Wang, G.: Deformation in sedimentary area of two-layered structure by landslide loading, Proc. 58th Annual Meeting of the Japan Landslide Society, The Japan Landslide Society, 2019, pp. 193-194 (in Japanese).
  319. Hasegawa, M.: Propagation mechanism of failure in sedimentary layer caused by landslide mass loading, Master thesis, Graduate School of Engineering, Toyama Prefectural University, 2019, 48p (in Japanese).
  320. Oyagi, N.: Landslide structure, Landslides Topographcal and geological recogination and terminology, The Japan Landslide Society, 2004, pp. 29-45 (in Japanese).
  321. Varnes, D. J.: Slope Movement Types and Processes. In: Schuster, R.L. and Krizek, R.J., Eds., Landslides, Analysis and Control, Transportation Research Board, Special Report No. 176, National Academy of Sciences, 1978, pp. 11-33.
  322. Yokoyama, S., Fujita, T., Kikuyama, K.: Slope movenment at Takarazuka Golf Course caused by the 1995 Southern Hyogo Prefecture Earthquake, Research report on landslides associated with the 1995 Southern Hyogo Prefecture Earthquake, The Japan Landslide Society, 1995, pp. 61-77 (in Japanese).
  323. Figure 6 Relationship between Maximum depth of slideing surface amd Length of deformation zone References Arbanas Ž., Dugonjić S. (2010) Landslide Risk Increasing Caused by highway construction, International Symposium in Pacific Rim, 26 -30th April 2010., Taipei, Taiwan, pp 333-343.
  324. Arbanas Ž., Dugonjić S., Benac Č. (2011) Causes of small scale landslides in flysch deposits of Istria, Croatia, Proceedings of Second World Landslides Forum, Rome, 03-07th October, 2011, 221-226.
  325. Arbanas Ž, Dugonjić S, Benac Č (2013) Causes of small scale landslides in Flysch deposits of Istria, Croatia. Landslide science and practice, volume I: landslide inventory and susceptibility and hazard zoning.
  326. Arbanas Ž., Mihalić Arbanas S., Vivoda Prodan M., Peranić J., Sečanj M., Bernat Gazibara S., Krkač M. (2017) Preliminary Investigations and Numerical Simulations of a Landslide Reactivation. In: Mikos M., Tiwari B., Yin Y., Sassa K. (eds) Advancing Culture of Living with Landslides. WLF 2017. Springer, Cham Benac Č Arbanas Ž, Jurak V, Oštrić M, Ožanić N (2005a) Complex landslide in the Rječina valley (Croatia): origin and sliding mechanism. Bull Eng Geol Environ 64(4): 361-371
  327. Benac Č., Jurak V., Oštrić M., Holjević D., Petrović G. (2005b) Appearance of exceeded erosion in the Salt creek area (Vinodol Valley). In: Velić I, Vlahović I, Biondić R (eds) Summaries of 3rd Croatian geological congress. Croatian Geological Institute, Zagreb, pp 173-174.
  328. Benac Č., Dugonjić S., Arbanas Ž., Oštrić M., Jurak V. (2009) The Origin Of Instability Phenomena Along The Karst-Flysch Contacts, ISRM International Symposium EUROCK 2009: Rock engineering in difficult ground conditions soft rock and karst, 29 -31th October, Cavtat, Croatia, pp 757-761.
  329. Benac Č., Dugonjić S., Vivoda M., Oštrić M., Arbanas, Ž. (2011) A complex landslide in the Rječina Valley: results of monitoring 1998-2010, Geologia Croatica: journal of the Croatian Geological Survey and the Croatian Geological Society. 64 (2011), 3; pp 239- 249. Benac Č., Oštrić M., Dugonjić Jovančević S. (2014) Geotechnical properties in relation to grain-size and mineral composition: The Grohovo landslide case study (Croatia). Geologia Croatica : journal of the Croatian Geological Survey and the Croatian Geological Society, 67 (2014), 2; 127-136. doi:10.4154/gc.2014.09
  330. Bernat S., Đomlija P., Mihalić Arbanas S. (2014) Slope movements and erosion phenomena in the Dubračina river basin: A geomorphological approach. Proceedings of 1 st regional symposium on landslides in the Adriatic-Balkan region ''Landslide and flood hazard assessment'', 6-9 March, Zagreb, Croatia. pp 79- 84.
  331. Cano M. and Tomás R. (2016) Proposal of a new parameter for the weathering characterization of carbonate flysch-like rock masses: The Potential Degradation Index (PDI). Rock Mechanics and Rock Engineering vol. 49, no. 7: 2623-2640.
  332. Dugonjić Jovančević, S. (2013) Landslide hazard assessment on flysxh slopes, Dissertation, Faculty of Civil Engineering, University of Rijeka. (in Croatian)
  333. Dugonjić, S., Arbanas Ž., Benac Č. (2008) Assessment of landslide hazard on flysch slopes, 5th Conference of Slovenian geotechnics, 9th Šuklje day, 12-14th June 2008, Nova Gorica, Slovenia, pp. 263- 272. Dugonjić Jovančević S., Arbanas Ž. (2012) Recent landslides on the Istrian Peninsula, Croatia, Natural hazards. Vol.62, 3; pp 1323- 1338 Dugonjić Jovančević S., Arbanas Ž., Benac Č., Mihalić Arbanas S. (2012) Landslide susceptibility analyses in flysch areas in the north-eastern part of the Adriatic coast, Risk Analysis VIII, Brebbia, Carlos (ed.), Southampton: WIT Press, doi:10.2495/RISK120211, pp 237-248.
  334. Dugonjić Jovančević S., Arbanas Ž. (2017) Influence of the runout potential on landslide-susceptible areas along the flysch-karst contact in Istria, Croatia. Natural hazards, 85 (2017), 3; 1347-1362. doi:10.1007/s11069-016-2640-2
  335. Đomlija P. (2018) Identification and clasification of landslides and erosion by visual interpretation of digital elevation model of Vinodol Valley, Dissertation, Faculty of Mining, geology and petroleum; University of Zagreb (in Croatian).
  336. Đomlija P., Bernat S., Mihalić Arbanas S., Benac Č. (2014) Landslide inventory in the area of Dubračina River Basin (Croatia), Landslide Science for a Safer Geoenvironment, Volume 2: Methods of Landslide Studies (Sassa K., Canuti P., Yin Y. eds). Switzerland: Springer International Publishing, pp 837-842.
  337. Đomlija P., Bočić N., Mihalić Arbanas S. (2017) Identification of geomorphological units and hazardous processes in the Vinodol Valley, Proceedings of the 2nd Regional Symposium on Landslides in the Adriatic-Balkan Region (Abolmasov, B.; Marjanović, M.; Đurić, U. eds). Belgrade: University of Belgrade, Faculty of Mining and Geology, pp 109-116
  338. Eberhardt E., Thuro K., Luginbuehl M. (2005) Slope instability mechanisms in dipping interbedded conglomerates and weathered marls-the 1999 Rufi landslide, Switzerland. Eng Geol 77(1-2): 35-56. doi: 10.1016/j.enggeo.2004.08.004
  339. Erguler Z.A. and Shakoor A. (2009) Quantification of fragment size distribution of clay-bearing rocks after slake durability testing. Environmental & Engineering Geoscience, vol. 15, no. 2: 81-89.
  340. Fredlund D.G., Xing A. (1994) Equations for the soil-water characteristic curve, Canadian Geotechnical Journal, 31(4): 521- 532. Gamble J.C. (1971) Durability-plasticity classification of shales and other argillaceous rocks. Ph.D. thesis, University of Illinois.
  341. Gulam V. (2012) Erosion of bed lands in central Istria flysch, Dissertation, University in Zagreb, Faculty of Mining-geology- petroleum, Zagreb.
  342. ISRM (1985) Suggested Methods for Determining Point Load Strength, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. Pergamon Press, Great Britain, Vol. 22:53-60.
  343. Maček M., Petkovšek A., Arbanas Ž., Mikoš M. (2017) Geotechnical aspects of landslides in flysch in Slovenia and Croatia. Proceedings of 2nd regional symposium on landslides in the Adriatic-Balkan region, 14-16 My, Belgrade, Serbia. pp 25-31.
  344. Marinčić S. (1981) Eocene flysch of the Adriatic area. Geološki vjesnik 23:27-38.
  345. Mihalić S., Krkač M., Arbanas Ž., Dugonjić S. (2011) Analysis of sliding hazard in wider area of Brus landslide, Proceedings of the 15th European conference on soil mechanics and geotechnical engineering, Athens, 12-15th September 2011, pp 1377-1382.
  346. Mihalić Arbanas S., Sečanj M., Bernat Gazibara S., Krkač, M., Begić, H., Džindo A., Zekan S., Arbanas Ž. (2017) Landslides in the Dinarides and Pannonian Basin -from the largest historical and recent landslides in Croatia to catastrophic landslides caused by Cyclone Tamara (2014) in Bosnia and Herzegovina, Landslides, 14 (2017), 6; 1861-1876, doi:10.1007/s10346-017-0880-1.
  347. Miščević P. and Vlastelica G. (2011) Durability characterization of marls from the region of Dalmatia, Croatia. Geotechnical and Geological Engineering, vol. 29, no. 5: 771-781.
  348. Pajalić S., Đomlija P., Jagodnik V., Arbanas Ž. (2017) Diversity of Materials in Landslide Bodies in the Vinodol Valley, Croatia, Advancing Culture of Living with Landslides (Mikoš, M.; Vilímek, V.; Yin, Y.; Sassa, K. eds), Berlin: Springer, pp 507-516.
  349. Peranić J. (2019) Importance of geotechnical cross-section unsaturated zone for landslide occurrence in flysch deposits, Doctoral dissertation, Faculty of civil engineering, University of Rijeka, https://urn.nsk.hr/urn:nbn:hr:157:773572
  350. Peranić J, Arbanas Ž (accepted, in press) Impact of the wetting process on the hydro-mechanical behavior of unsaturated residual soil from flysch rock mass: preliminary results, Bulletin of Engineering Geology and the Environment. doi: 10.1007/s10064- 019-01604-0
  351. Peranić J, Arbanas Ž, Cuomo S, Maček M (2018) Soil-Water Characteristic Curve of Residual Soil from a Flysch Rock Mass, Geofluids, Article ID 6297819, 2018:15 pages. doi:10.1155/2018/6297819
  352. Peranić J., Moscariello M., Cuomo S., Arbanas Ž. (in review) Hydro- mechanical properties of unsaturated residual soil from a flysch rock mass.
  353. Peranić J, Arbanas Ž, Cuomo S, Maček M (2018) Soil-Water Characteristic Curve of Residual Soil from a Flysch Rock Mass, Geofluids, Article ID 6297819, 2018:15 pages. doi:10.1155/2018/6297819
  354. Selby M.J. (1993) Hillslope materials and processes. Oxford University Press, Oxford Van Genuchten M.T. (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Science Society of America Journal, 44 (5): 892-898.
  355. Vivoda M., Benac Č., Žic E., Đomlija P., Dugonjić Jovančević S. (2012) Geohazard in the Rječina River Valley in past and present, Hrvatske vode, Journal for water economy, 20 (2012), 81, pp 105- 116. (in Croatian)
  356. Vivoda Prodan M. (2016) The influence of weathering process on residual shear strength of fine grained lithological flysch components, Doctoral dissertation, Faculty of Civil Engineering, University of Rijeka. (in Croatian)
  357. Vivoda Prodan M., Arbanas Ž. (2016) Weathering Influence on Properties of Siltstones from Istria, Croatia. Advances in Materials Science and Engineering. 2016 (2016), 3073202; 1-15.
  358. Vivoda Prodan M., Mileusnić M., Mihalić Arbanas S., Arbanas Ž. (2017) Influence of weathering processes on the shear strength of siltstones from a flysch rock mass along the northern Adriatic coast of Croatia. (Bulletin of engineering geology and the environment. 76 (2017), 2; 695-711.
  359. Žufić E. (2011) Investigation of geotechnical properties of flysch rock mass in Istria area. M.S. thesis, University of Zagreb, Croatia (in Croatian)
  360. References GEO-SLOPE International Ltd: "Stability Modeling with SLOPE/W 2007 Version, An Engineering Methodology", Third Edition, March 2008. G.N. Smith, I. Smith: "Elements of Soil Mechanics, Seventh Edition", Blackwell Science, UK, 1998.
  361. Powell J.J.M. Clayton C.R.I., Field geotechnical testing, ICE Manuel of geotechnical engineering (629 -652), Institution of Civil Engineers,2012
  362. Uljarević M., Milovanović S., Vukomanović R., (2019) Design of geotechnical anchors on the influence of temperature, Izgradnja 73. 3-4, 132-136.
  363. Uljarević M., Palikuća Lj., Biorac D., (2017) Realibility of Defined Geotechnical Parameters in Implementation of Geotechnical Design, Procedings of 11th International Tunneling and Underground Structures Conference, 23rd September 2017.
  364. Ljubljana, Slovenia. pp 41-47
  365. References Bosnian Landslide Investigation and Stabilization Method, Zekan S., Hodžić M., Salković S., Borogovac Š., Hasić L. , (2015) Proceedings of GEO-EXPO, S. Zekan, Geotechnical Society of Bosnia and Herzegovina, Tuzla, Bosnia and Herzegovina doi.org/10.35123/GEO-EXPO_2015_12, 73-78 p Landslide consequence analysis: a region-scale indicator-based methodology Puissant A. (2014) Landslides 11, Sassa K., Springer-Verlag, Berlin-Heidelberg, DOI 10.1007/s10346-013- 0429-x, p 843-858
  366. Landslide hazard zonation: a review of principles and practice, Varnes D.J. (1984), UNESCO, ISBN 92-3-101895-7, Paris, France, Scales of landslide hazard and risk mapping, Mihalic S. (1998), Geotechnical hazards, B. Marić at all., Proceedings of rhe XIth Danube -Europe Conference on Soil Mechanics and Geotechnical Engineering, Poreč, Croatia, ISBN 90 54109572, p 847 Slope movements -Geotechnical characterisation, risk assessment and mitigation, Leroulei S., Locat J. (1998) Geotechnical hazards, B. Marić at all., Proceedings of rhe XIth Danube -Europe Conference on Soil Mechanics and Geotechnical Engineering, Poreč, Croatia, ISBN 90 54109572, p 95-106
  367. Soil -Structure Interaction at the Bogatići Landslide in Bosnia and Herzegovina, Zekan S., Uljarević M., Mešić M., Baraković A. (2018). Proceedings of China-Europe Conference on Geotechnical Engineering, Wei Wu • Hai-Sui Yu, Springer Series in Geomechanics and Geoengineering, Vienna, ISSN 1866-8755, https://doi.org/10.1007/978-3-319-97115-5, p 1564
  368. References Briaud J.L. (2013) Geotechnical Engineering: Unsaturated and Saturated Soils, Wiley, (ISBN 978-0470948569), 1022 p.
  369. Cheng Y.M. (1997) Comparison between method of slices and method of wedges in slope stability analysis, Geotechnical engineering Journal of SAGS, Vol 28, No1, Southeast asian geotechnical society, pp 71-88
  370. Lim K.C., Li A., Lyamin M. Slope stability analysis for fill slopes using finite element limit analysis (2015), Proc. of the XVI ECSMGE Geotechnical Engineering for Infrastructure and Development 13 -17 September 2015. Edinburgh, England, P. 1597 -1602.
  371. Tschuchnigg H.F. (2015) Performance of strength reduction finite element techniques for slope stability problems, Proc. of the XVI ECSMGE Geotechnical Engineering for Infrastructure and Development, 13 -17 September 2015, Edinburgh, England, P. 1687 -1692.
  372. Velykodnyy YU.Y., Bida S.V., Zotsenko V.M., Lartseva I.I., Yahol nyk A.M. (2016) Zakhyst terytoriy vid zsuviv, "Drukarnya Madryd", Kharkiv, (ISBN 978-617-7294-88-6), 160 s.
  373. References BAS EN 1997-1: Eurokod 7 -Geotehničko projektovanje -Dio 1: Opća pravila (2008).
  374. BAS EN 1997-1: Eurokod 7 -Geotehničko projektovanje -Dio 2: Ispitivanja tla (2008).
  375. Laušević, M. i Jovanović, Č. (1984): Tumač za osnovnu geološku kartu lista Doboj, R -1 : 100 000. Geoinženjering, OOUR Institut za Geologiju. Sarajevo. Pravilnik o geotehničkim istraživanjima i ispitivanjima te organizaciji i sadržaju misija geotehničkog inženjerstva, FBiH, (2009).
  376. Zlatan T. (2014): Glavni projekat sanacije klizišta "Makljenovac", geotehnički projekat -misija geotehničkog inženjerstva G21, Divel d.o.o. Sarajevo.
  377. Zubak, Ž. i Bajrić, A. ( 2014): Elaborat o inženjerskogeološkim karakteristikama terena na lokaciji klizišta Makljenovac. "Geosonda" d.o.o. Zenica.
  378. References Abbruzzese, J.M., Sauthier, C., Labiouse, V. (2009) Considerations on Swiss methodologies for rock fall hazard mapping based on trajectory modelling. Nat. Hazards Earth Syst. Sci., 9, 1095-1109.
  379. Amato, J., Hantz, D., Guerin, A., Jaboyedoff, M., Baillet, L., Marsical, A. 2016. Influence of meteorological factors on rockfall occurrence in a middle mountain limestone cliff. Natural Hazards and Earth System Sciences, 16, 719 -735
  380. Bavec M., Čarman M., Durjava D., Jež J., Krivic M., Kumelj Š., Požar M., Komac M., Šinigoj J., Rižnar I., Jurkovšek B., Trajanova M., Poljak M., Celarc B., Demšar M., Milanič B., Mahne M., Otrin J., Čertalič S., Štih J., Hrvatin M. (2012) Izdelava prostorske baze podatkov in spletnega informacijskega sistema geološko pogojenih nevarnosti zaradi procesov pobočnega premikanja, poplavnih, erozijskih kart ter kart snežnih plazov -pilotni projekt. Geološki zavod Slovenije, Ljubljana (ISBN_P-II-30d/a-1/28). 40 f.
  381. Čarman, M., Peternel, T. (2010) Skalni podori Stara gora pri Dvoru v občini Žužemberk. Geologija 53 (2), 173-180.
  382. Čarman, M., Kumelj, Š., Komac, M., Ribičič, M. (2011a) Rockfall susceptibility map of Slovenia. In: Mölk, M. et al. (eds.) Interdisciplinary Workshop on Rock Fall Protection. Innsbruck, Austrian Service for Torrent and Avalanche Control, Geological Service, pp. 3.
  383. Čarman, M., Kumelj, Š., Komac, M., Ribičič, M. (2011b) Pregledna karta verjetnosti pojavljanja podorov v merilu 1: 250.000. In: Rožič, B. (ed.) 20. posvetovanje slovenskih geologov, Ljubljana, Naravoslovnotehniška fakulteta, Oddelek za geologijo, str. 22-25.
  384. Čarman, M., Bavec, M., Komec, M., Krivic, M. (2015) Rockfall susceptibility assessment at the municipal scale (Bovec municipality, Slovenia). In: Lollino, G. et al. (eds.) Engineering geology for society and territory, Landslide processes.
  385. Switzerland, Springer, str. 2017-2021.
  386. Dorren, L.K.A. (2003) A review of rockfall mechanics and modelling approaches. Progress in Physical Geography, 27 (1), 69-87.
  387. Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi E., Savage, W. (2008) Guidelines for landslide suscpetibility, hazard and risk zoning for land use planining. Eng. Geol., 102, 85-98.
  388. Ferrari, F., Giacomini, A., Thoeni, K.(2016) Qualitative Rockfall Hazard Assessment: A Comprehensive Review of Current Practices. Rock Mechanics and Rock Engineering, 49 (7), 2865-2922.
  389. Hungr, O., Leroueil, S., Picarelli, L. (2014) The Varnes classification of landslide types, an update. Landslides 11 (2), 167-194.
  390. Losasso, L., Jaboyedoff, M., Sdao F. (2017) Potential rock fall source areas identification and rock fall propagation in the province of Potenza territory using an empirically distributed approach. Landslides, 14 (2), 1593-1602.
  391. Mikoš, M., Fazarinc, R., Ribičič, M. (2006a) Sediment production and delivery from recent large landslides and earthquake-induced rock falls in the Upper Soča River Valley, Slovenia. Engineering Geology, 86, 198-210.
  392. Mikoš, M., Petje, U., Ribičič, M. (2006b) Application of a rockfall simulation program in an alpine valley in Slovenia. V: MARUI, Hideaki (ur.), MIKOŠ, Matjaž (ur.). Disaster mitigation of debris flows slope failures and landslides : proceedings of the INTERPRAEVENT international symposium : september 25-29, 2006 in Niigata, Japan, (Frontiers science series, No, 47). Universal Academy Press, Tokyo: str. 199-211.
  393. Komac, M. (2012) Regional landslide susceptibility model using Monte Carlo approach -the case of Slovenia. Geological Quarterly 56 (1), 41-54.
  394. Peternel, T. (2010) Ocena ogroženosti pred padanjem kamnov na območju Dvora pri Žužemberku. Diplomsko delo. Univerza v Ljubljani , NTF, Oddelek za geologijo, Ljubljana. 54 str.+priloge.
  395. Petje, U., Mikoš, M., Majes, B. (2005a) Modeliranje gibanje skalnih podorov = Modelling of rockfall motion. Acta hydrotechnica 23/38, 19-37.
  396. Petje, U., Mikoš, M., Ribičič, M. (2005b) Ocena nevarnosti padajočega kamenja za odsek regionalne ceste v dolini Trente. Geologija, 48 (2), 341-354.
  397. Petje, U., Ribičič, M. & Mikoš, M. (2005c) Computer simulation of stone falls and rockfalls = Računalniško simuliranje skalnih odlomov in podorov. Acta geographica Slovenica, 45 (2), 93-120.
  398. Rekanje, B. (2019). Vpliv meteoroloških spremenljivk na frekvenco pojavljanja padajočega kamenja v Baški grapi. Oddelek za gozdarstvo in obnovljive gozdne vire, Biotehniška fakulteta, Univerza v Ljubljani, 54 str.
  399. Ribičič, M., Vidrih, R. (1998) Plazovi in podori kot posledica potresov. Ujma 12, 95 -105.
  400. Figure 7 Variation of normal passage heights (95% confidence level) per raster cell along railway. Maximum value is 22.9 m 230
  401. Varnes, D.J. (1984) IAEG Commission on Landslides & other Mass Movements. In: Landslide hazard zonation: a review of principles and practice, 63. Paris, UNESCO Press.
  402. Vidrih, R., Ribičič, M., Suhadolc, P. (2001) Seismogeological effects on rocks during the 12 April 1998 upper Soča Territory earthquake (NW Slovenia). Tectonophysics 330, 153-175.
  403. Volkwein, A., Schellenberg, K., Labiouse, V., Agliardi, F., Berger, F., Bourrier, F.,Dorren, L.K.A., Gerber, W., Jaboyedoff, M. (2011) Rock fall characterisation and structura lprotection -a review. Natural Hazards and Earth System Sciences, 11, 2617-2651.
  404. Zorn, M. (2002). Rockfalls in Slovene Alps (Podori v slovenskih Alpah). Geografski zbornik 42, 124-160.
  405. Zorn, M. (2003). Nekateri večji skalni podori v Alpah. Ujma:17-18, 241 -250.
  406. Zorn, M., Komac, B., Kumelj, Š. (2012) Mass movement susceptibility maps in Slovenia: the current state. Geografski vestnik, 84 (1), 99- 112. References MAIN PROJECT, GEOTECHNICAL REPAIR ELABORATE for the North Clay pit Area, CONSTRUCTION PROJECT NO. TD18P01 / I., Made in: P R A G M A d. o. o. o. -Z a g r e b, ELABORAT REPORT ON GEOTECHNICAL RESEARCH WORKS, GEOTECHNICAL ELABORAT TD18I01 Created by: PRAGMA d.o.o. -Zagreb ELABORAT REPORT ON GEOTECHNICAL RESEARCH WORKS, GEOTECHNICAL ELABORAT TD16I07 made in: PRAGMA d.o.o. - Zagreb Report on Design Supervision and Control Surveys (Pragma d.o.o .; study TD18I05) Report on the ongoing testing for the purpose of internal verification and quality assurance during the execution of the remediation work (SPP d.o.o .Varaždin, on behalf of the Contractor, Tarac d.o.o. Bedekovčina -study SPP/ 2018 / 108A
  407. References Janža, M., Serianz, L., Šram, D., Klasinc, M. (2018) Hydrogeological investigation of landslides Urbas and Čikla above the settlement of Koroška Bela (NW Slovenia). Geologija 60/2, 191-203
  408. Jež, J., Mikoš, M., Trajanova, M., Kumelj, Š., Budkovič, T. & Bavec, M. (2008) Koroška Bela alluvial fan -the result of the catastrophic slope events (Karavanke Mountains, NW Slovenia). Geologija. 51/2, 219-227.
  409. Komac M, Kumelj Š, Ribičič M (2009) Debris-flow susceptibility model of Slovenia at scale 1: 250,000. Geologija 52/1, 87-104
  410. Komac M, Holly R, Mahapatra P, Van der Marel H, Bavec M (2014) Coupling of GPS/GNSS and radar interferometric data for a 3D surface displacement monitoring of landslides. Landslides 12(2): 241-257
  411. Lavtižar, J. (1897) Zgodovina župnij in zvonovi v dekaniji Radolica, Ljubljana Mikoš M, Sodnik J, Podobnikar T, Fidej G, Bavec M, Celarc B, Jež J, Rak G, Papež J (2012) PARAmount-European research project on transport infrastructure safety in the Alps. In: Sassa K, Takara K, He B (eds) Proceedings IPL Symposium Kyoto, 2012: 20 January 2012, Venue: Disaster Prevention Research Institute, Kyoto University Uji, Kyoto, Japan. International Consortium on Landslides, Tokyo, pp 111-118
  412. Peternel T, Kumelj Š, Oštir K, Komac M (2017) Monitoring the Potoška planina landslide (NW Slovenia) using UAV photogrammetry and tachymetric measurements. Landslides 14(1):395-406.
  413. Peternel, T., Jež, J., Milanič, B., Markelj, A., Jemec Auflič, M. (2018) Engineering-geological conditions of landslides above the settlement of Koroška Bela (NW Slovenia). Geologija 61/2, 177- 189
  414. Petkovšek A, Fazarinc R, Kočevar M, Maček M, Majes B, Mikoš M (2011) The Stogovce landslide in SW Slovenia triggered during the September 2010 extreme rainfall event. Landslides 8/4, 499- 506
  415. Zupan, G. (1937) Krajevni leksikon dravske banovine. Uprava Krajevnega leksikona dravske banovine, Ljubljana
  416. References Arbanas Ž, Udovič D, Sečanj M, Đomlija P, Mihalić Arbanas S (2018) Recent experience in rockfall hazard and risk assessment in rock mass. Proc. of the 7th Conf. of the Croatian Platform for Disaster Risk Reduction, 11th-12th October 2018. Zagreb, Croatia, pp. 222-231. Bernat Gazibara S (2019) Methodology for landslide mapping using high resolution digital elevation model in the Podsljeme Area (City of Zagreb). PhD thesis, Faculty of Mining, Geology and Petrol. Eng. of the University of Zagreb, Zagreb, Croatia.
  417. Bernat Gazibara S, Cindrić Kalin K, Erak M, Krkač M, Sečanj M, Đomlija P, Arbanas Ž, Mihalić Arbanas S (2019) Landslide hazard analysis in national-scale for landslide risk assessment in Croatia. Proceedings of the 4 th ReSyLAB, 23 rd -25 th October 2019. Sarajevo, BIH, pp. 1-8.
  418. Bernat Gazibara S, Krkač M, Sečanj M, Begić H, Mihalić Arbanas S (2017a) Extreme rainfall events and landslide activation in Croatia and Bosnia and Herzegovina. In: Proc. of the 3rd Regional Symp. on Landslides in the Adriatic-Balkan Region. Ljubljana, Slovenia. Bernat Gazibara S, Krkač M, Sečanj M, Mihalić Arbanas S, (2017b) Identification and mapping of shallow landslides in the City of Zagreb (Croatia) using the LiDAR-based terrain model. In: Mikoš M, Tiwari B, Yin Y, Sassa K (eds) Advancing culture of living with landslides, Volume 2: Advances in landslide science. Springer International Publishing AG, Switzerland, Cham, pp 1093-a.
  419. Bernat Gazibara S, Krkač M, Sečanj M, Mihalić Arbanas1 (2018) Landslide inventory mapping based on LIDAR data. Proc. of the 7th Conf. of the Croatian Platform for Disaster Risk Reduction, 11th-12th Oct 2018. Zagreb, Croatia, pp. 196-202.
  420. Bernat Gazibara S, Mihalić Arbanas S, Krkač M, SečanjM (2017c) Catalog of precipitation events that triggered landslides in northwestern Croatia. In: Abolmasov B, Marjanović M, Đurić U (eds) Proc. of the 2nd Regional Symp. on landslides in the Adriatic-Balkan Region. University of Belgrade, Faculty of Mining and Geology, Belgrade, pp 103-107
  421. Bernat S, Mihalić Arbanas S, Krkač M (2014a) Landslides triggered in the continental part of Croatia by extreme precipitation in 2013. In: Lollino G et al. (eds) Engineering Geology for Society and Territory, Volume 2: Landslide Processes. Springer, Heidelberg, pp 1599-1603.
  422. Bernat S, Mihalić Arbanas S, Krkač M (2014b) Inventory of precipitation triggered landslides in the winter of 2013 in Zagreb (Croatia, Europe). In: Sassa K, Canuti P, Yin Y (eds) Landslide Science for a Safer Geoenvironment, Volume 2: Methods of Landslide Studies. Springer-Verlag Berlin Heidelberg, pp 829-836.
  423. Croatian Platform for Disaster Risk Reduction Main Working Group (2019) Disaster risk assessment of the Republic of Croatia, App. 1 Scenario Development Report, Zagreb. 562p.
  424. European Commission, EC (2010) Risk Assessment and Mapping Guidelines for Disaster Management. European Commission, Brussels. 43p.
  425. European Commission, EC (2010) Risk Assessment and Mapping Guidelines for Disaster Management. URL: http:// https://ec.europa.eu/echo/files/about/COMM_PDF_SEC_2010_1 626_F_staff_working_document_en.pdf [Last accessed: 1st Sept 2019].
  426. FAO Subregional Office for Southern and East Africa Harare (2004) Drought impact mitigation and prevention in the Limpopo River Basin. Food and Agriculture Organization of the UN, Rome. 178p.
  427. Fell R, Corominas, J, Bonnard C, Cascini L, Leroi E, Savage, WZ (on behalf of the JTC-1 Joint Technical Committee on Landslides and Engineered Slopes) (2008a) Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Engineering Geology, 102: 85-98.
  428. Fell R, Corominas, J, Bonnard C, Cascini L, Leroi E, Savage, WZ (on behalf of the JTC-1 Joint Technical Committee on Landslides and Engineered Slopes) (2008b) Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning. Engineering Geology, 102: 99-111.
  429. ISO (2009) ISO GUIDE 73:2009, Risk management-Vocabulary, 17p. ISO (2018) ISO 31000:2018, Risk management -Guidelines, 18p.
  430. Krkač M, Bernat Gazibara, Sečanj M, Arbanas Ž, Mihalić Arbanas S (2019) Continuous monitoring of the Kostanjek landslide. Proc. of the 4 th ReSyLAB, 23 rd -25 th October 2019. Sarajevo, BIH, pp. 1-6.
  431. Krkač M, Bernat Gazibara S, Sečanj M, Mihalić Arbanas S (2018) Monitoring and prediction of landslide movement. Proc. of the 7th Conf. of the Croatian Platform for Disaster Risk Reduction, 11th-12th Oct 2018. Zagreb, Croatia, pp. 214-221.
  432. McKee T B, Doeksen N J, Kleist J (1993) The relationship of drought frequency and duration on time scales. Proceedings of the 8th conference of applied climatology. Anaheim C A (ed.). American Meteorology Society, Boston MA. pp. 179-184.
  433. Mihalić S, Arbanas Ž, Krkač M, Dugonjić S, Ferić P (2010): Landslide hazard maps and early warning systems for mitigation of landslide risk. Proc. of the 2nd Conf. of the Croatian Platform for Disaster Risk Reduction, 15 Oct 2010. Zagreb, Croatia, pp. 18-22.
  434. Mihalić Arbanas S, Arbanas Ž, Bernat S, Krkač M, Kalinić P, Martinović K, Fabris N, Sajko J, Antolović A (2013) Management of the crisis situations caused by landslide activations. Proc. of the 5th Conf. of the Croatian Platform for Disaster Risk Reduction, 17 Oct 2013. Valbaldon, Croatia, pp. 151-164.
  435. Mihalić Arbanas S, Bernat Gazibara S, Cindrić Kalin K, Krkač M, Sečanj M, Đomlija P, Arbanas Ž (2018) Landslide hazard and risk analysis: International and Croatian experience in last 20 years. Proc. of the 7th Conf. of the Croatian Platform for Disaster Risk Reduction, 11th-12th Oct 2018. Zagreb, Croatia, pp. 180-189.
  436. Mihalić Arbanas S, Krkač M, Bernat Gazibara S, Komac M, Sečanj M, Arbanas Ž (2018) TXT-tool 2.385-1.1 A Comprehensive Landslide Monitoring System: The Kostanjek Landslide, Croatia // Landslide Dynamics: ISDR-ICL Landslide Interactive Teaching Tools. Vol. 1: Fundamentals, Mapping and Monitoring. Sassa K et al. (eds).
  437. Springer, Cham. pp. 449-464
  438. Mihalić Arbanas S, Sečanj M, Bernat Gazibara S, Krkač M, Begić H, Džindo A, Zekan S, Arbanas Ž (2017) Landslides in the Dinarides and Pannonian Basin-from the largest historical and recent landslides in Croatia to catastrophic landslides caused by Cyclone Tamara (2014) in Bosnia and Herzegovina. Landslides. 14(6): 1861-1876.
  439. Podolszki L, Parwata N S, Shimizu N, Pollak D, Vrkljan I (2019) Landslide in Hrvatska Kostajnica -collected data and analysis in progress. In: Sokolić I et al. (eds) Proc. of 8 th Symp. of Croatian Geotechnical Society and ISRM Specialized Conf., 22-25 June 2009. Croatian Geotechnical Society, Zagreb. pp 323-328.
  440. Sečanj M, Mihalić Arbanas S, Krkač M, Bernat Gazibara S, Arbanas Ž (2019) Preliminary rockfall susceptibility assessment of the rock slopes above the Town of Omiš (Croatia). In: Sokolić I et al. (eds) Proc. of the ISRM Specialised Conf. "Geotechnical challenges in karst", 11-13 April 2019. Croatian Geotechnical Society, Zagreb. pp 347-352.
  441. UN Expert Working Group on Indicators and Terminology Relating to Disaster Risk Reduction (2016) Report of the open ended intergovernmental expert working group on indicators and terminology relating to disaster risk reduction. United Nations General Assembly, Geneva. 41p. United Nations International Strategy for Disaster Reduction, UNISDR (2009) UNISDR Terminology on Disaster Risk Reduction. UNISDR, Geneva. 35p.
  442. References Arbanas, Ž., Grošić, M., Udovič, D., Mihalić, S. (2012) Rockfall hazard analyses and rockfall protection along the Adriatic coast of Croatia. Journal of Civil Engineering and Architecture 6(3), pp. 344- 355. Arbanas, Ž., Udovič D., Sečanj, M., Đomlija, P., Mihalić Arbanas, S. (2018) Recent experience in rockfall hazard and risk assessment. Proc. of the 7th Conf. of the Croatian Platform for Disaster Risk Reduction, Zagreb, Croatia, pp. 222-231.
  443. Arbanas, Ž., Vivoda Prodan , M., Dugonjić Jovančević , S., Peranić, J., Udovič, D., Bernat Gazibara, , S., Krkač , M., Sečanj , M., Mihalić Arbanas, S., (2019) Rockfall Modelling and Rockfall Protection at the Slopes above the City of Omiš, Croatia. In: Sokolić I et al. (eds) Proc. of the ISRM Specialised Conf. "Geotechnical challenges in karst". Croatian Geotechnical Society, Zagreb. pp 121-126.
  444. Chen, N., Kemeny, J., Jiang, Q., Pan, Z., (2017) Automatic extraction of blocks from 3D point clouds of fractured rock. Comput. Geosci. 109, pp. 149-161.
  445. Dorren, L.K.A. (2003) A review of rockfall mechanics and modelling approaches. Prog. Phys. Geogr. 27, pp. 69-87.
  446. Emmer, A. (2008) Geographies and Scientometrics of Research on Natural Hazards. Geosciences 8, pp. 382.
  447. Francioni, M., Salvini, R., Stead, D., Coggan, J. (2018) Improvements in the integration of remote sensing and rock slope modelling. Natural hazards 90(2), pp 975-1004.
  448. Giordan, D., Hayakawa, Y., Nex, F., Remondino, F., Tarolli, P. (2018) Review article: the use of remotely piloted aircraft systems (RPASs) for natural hazards monitoring and management. Nat. Hazards Earth Syst. Sci. 18, pp. 1079-1096, Jaboyedoff, M.; Oppikofer, T.; Abellán, A.; Derron, M.-H.; Loye, A.; Metzger, R.; Pedrazzini, A. (2012) Use of LIDAR in landslide investigations: A review. Nat. Hazards 61, pp. 5-28.
  449. James, M.R., Robson, S. (2012) Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application. J. Geophys. Res. Earth Surf 117.
  450. Lato, M.J., Vöge, M. (2012) Automated mapping of rock discontinuities in 3D lidar and photogrammetry models. Int. J. Rock Mech. Min. Sci. 54, pp. 150-158.
  451. Li, L., Lan, H. (2015) Probabilistic modeling of rockfall trajectories: a review. Bulletin of Engineering Geology and the Environment, 74(4), pp. 1163-1176.
  452. Marinčić, S., Korolija, B., Mamužić, B., Magaš, N., Majcen, Ž., Brkić, M,, Benček, Đ. (1977) Osnovna geološka karta SFRJ 1:100.000. Tumač za list Omiš. Savezni geol. zavod, Beograd, pp. 21-35 (in Croatian).
  453. Riquelme, A., Abellán, A., Tomás, R., Jaboyedoff, M. (2014) A new approach for semi-automatic rock mass joints recognition from 3D point clouds. Comput. Geosci. 68, pp. 38-52.
  454. Riquelme, A., Abellán, A., Tomás, R. (2015) Discontinuity spacing analysis in rock masses using 3D point clouds. Eng. Geol. 195, pp. 185-195.
  455. Riquelme, A., Tomás, R., Abellán, A. (2016) Characterization of rock slopes through slope mass rating using 3D point clouds. Int. J. Rock Mech. Min. Sci. 84, pp. 165-176.
  456. Riquelme, A., Tomás, R., Cano, M., Pastor, J.L., Abellán, A. (2018) Automatic Mapping of Discontinuity Persistence on Rock Masses Using 3D Point Clouds. Rock Mech. Rock Eng. 51, pp. 3005-3028.
  457. RockFall (2018) https://www.rocscience.com/software/rocfall (accessed on 15 September 2019).
  458. Sarro, R., Riquelme, A., García-Davalillo, J.C., Mateos, R.M., Tomás, R., Pastor, J.L., Cano, M.,Herrera (2018) Rockfall Simulation Based on UAV Photogrammetry Data Obtained during an Emergency Declaration: Application at a Cultural Heritage Site. Remote Sens. 10, 1923, pp. 1-20
  459. Sečanj, M., Mihalić Arbanas, S., Kordić, B., Krkač, M., Bernat Gazibara, S., 2017. Identification of rock prone areas on the steep slopes above the Town of Omiš, Croatia. Proceedings: of World Landslide Forum 4, Advancing Culture of Living vith Landslidees, Vol. 5
  460. Sečanj M, Mihalić Arbanas S, Krkač M, Bernat Gazibara S, Arbanas Ž (2019) Preliminary rockfall susceptibility assessment of the rock slopes above the Town of Omiš (Croatia). In: Sokolić I et al. (eds) Proc. of the ISRM Specialised Conf. "Geotechnical challenges in karst". Croatian Geotechnical Society, Zagreb. pp 347-352.
  461. Volkwein, A., Schellenberg, K., Labiouse, V., Agliardi, F., Berger, F., Bourrier, F., Dorren, L.K.A., Gerber, W., Jaboyedoff, M. (2011) Rockfall characterisation and structural protection-a review. Nat Hazards Earth Sys Sci 11, pp. 2617-2651