Academia.eduAcademia.edu

Abstract

Anssi Laaksonen: Structural Behaviour of Long Concrete Integral Bridges 204 p. + 61 p. app. There are more than 20,000 bridges in Finland, of which about 2000 with a sum of span lengths over 20m are actual integral abutment road bridges. The lower building and maintenance costs of integral abutment bridges compared to conventional abutment bridges have increased interest for the former. This study deals with the structural behaviour of long concrete integral abutment bridges. The bridge subtype was limited to fully integral abutment bridges without any bearings or expansion joints. This study examines structural behaviour from the viewpoint of a bridge designer taking into consideration the effects of soil-structure interaction. It is a part of larger research project called "Soil-Bridge Structure Interaction". The main goal was to determine the effects of different soil properties at opposite bridge ends on the structural behaviour of fully integral bridges Another important goal was to determine the maximum allowable total thermal expansion length of a fully integral concrete bridge in terms of structural behaviour of piles at the bridge ends at the climatic conditions of monitored bridges. A further goal was to give suggestions for constructing integral bridges together with the whole research team. Three bridges, Haavistonjoki Bridge, Myllypuro Overpass and Tekemäjärvenoja Bridge, were monitored during this study. The main focus of the monitoring was the Haavistonjoki Bridge. The instrumentation of Haavistonjoki Bridge on the Tampere-Jyväskylä highway was completed in autumn 2003. Monitoring data have been collected by a total of 191 gauges, of which 98 are still working seven years after the monitoring started. The instrumentation is used to measure longitudinal abutment movements, abutment rotations, earth pressure behind abutments, superstructure displacements, frost depth, air temperature, and temperature differences in superstructure and approach embankment. The method for calculating uniform bridge superstructure temperature based on ambient temperature was developed on the basis of monitoring results from the Haavistonjoki Bridge. The temperature was calculated backwards until 1959 with this method. Obtained results correlate very well with the temperature loads of Eurocode EN 1991-1-5. Structural analyses were run on single laterally loaded composite piles and a whole bridge structure using software based on the finite element method. The analyses on single com-8.3.

References (149)

  1. AASHTO. 1989. AASHTO Guide Specifications -Thermal Effects in Concrete Bridge Superstructures. Washington, D.C. 60 p.
  2. AASHTO. 2007. AASHTO LRFD Bridge Design Specifications, SI units, 4th Edition. Washington, D.C. pp. 3-99 -3-104.
  3. Abhasai, S & Dicleli, M. 2004. Effect of cyclic thermal loading on the perform- ance of steel H-piles in integral bridges with stub-abutments. Journal of Con- structional Steel Research. Vol. 60, No. 2., pp. 161-182.
  4. Allotey, N. & El Naggar, M. H. 2008. Generalized dynamic Winkler model for nonlinear soil-structure interaction analysis. Canadian Geotechnical Journal. Vol. 45, No. 4, pp. 560-573.
  5. Arsoy, S. 2000. Experimental and Analytical Investigations of Piles and Abut- ments of Integral Bridges. Dissertation. Virginia Polytechnic Institute and State University. 186 p. + 59 app. p.
  6. Arsoy, S. et al. 2002. Experimental and Analytical Investigations of Piles and Abutments of Integral Bridges. Virginia Transportation Research Council. Report No. FHWANTRC 02-CR6. 55 p.
  7. Ashford, S. & Juirnarongrit, T. 2003. Evaluation of Pile Diameter Effect on Ini- tial Modulus of Subgrade Reaction. Journal of Geotechnical and Geoenvi- ronmental Engineering. Vol. 129, No. 3., pp. 234-242.
  8. Ashford, S. 2005. Effect of the pile diameter on the modulus of subgrade reac- tion. Publication number SSRP-2001/22, University of California, San Diego. 322 p. + 32 app. p. ISBN 952-15-1620-8.
  9. Ashour, M. & Norris, G. 2000. Modeling Lateral Soil-Pile Response Based on Soil-Pile Interaction. Journal of Geotechnical and Geoenvironmental Engi- neering. Vol. 126, No. 5., pp. 420-428.
  10. Bouafia, A. 2007. Single piles under horizontal loads in sand: determination of P-Y curves from the prebored pressuremeter test. Geotechnical and Geologi- cal Engineering. Vol. 25, No. 3., pp. 283-301.
  11. Bowles, J.E. 1982. Foundation Analysis and Design, Chapter 16. pp. 867-968. ISBN 0-07-118844-4
  12. Branco, F. & Mendes, P. 1993. Thermal Actions for Concrete Bridge Design. Journal of Structural Engineering. Vol. 119, No. 8, pp. 2313-2331.
  13. Brena, S. & Bonczar, C. et al. 2007. Evaluation of Seasonal and Yearly Behav- iour of an Integral Abutment Bridge. Journal of Bridge Engineering. Vol. 12, No. 3., pp. 296-305.
  14. Briaud, J. L. et al. 1984. Laterally loaded piles and the pressuremeter: Compari- son of existing methods. Laterally Loaded Deep Foundations, ASTM STP 835, ASTM, West Conshohocken. pp. 97-111.
  15. Broms, B. 1976. Geoteknik, Kompendium Del IV. Kungliga Tekniska Högsko- lan (Royal Institute of Technology), Stockholm. 92 p. (In Swedish)
  16. Budkowska, B. & Szymczak, C. 1995. On first variation of extremum values of displacements and internal forces of laterally loaded piles. Computer & Structures. Vol. 57. No. 2. pp. 303-307.
  17. Byung, T.K. et al. 2004. Experimental Load-Transfer Curves of Laterally Loaded Piles in Nak-Dong River Sand. Journal of Geotechnical and Geo- environmental Engineering. Vol. 130, No. 4., pp. 416-425.
  18. Carder, D. et al. 2002. Suitability testing of materials to absorb lateral stresses behind integral bridge abutments. Publication number TRL552, Transport Research Laboratory. 48 p. + 4 app. p. ISSN 0968-4107.
  19. Carter, D.P. 1984. A Non-linear Soil Model for predicting lateral pile response. Master's thesis. THESIS 1984-C24. University of Auckland.
  20. Castelli, F. 2002. Discussion of ''Response of Laterally Loaded Large- Diameter Bored Pile Groups'' by Charles W. W. Ng, Limin Zhang, and Dora C. N. Nip. Journal of Geotechnical and Geoenvironmental Engineering. Vol. 128, No. 11., pp. 963-964.
  21. Chakrabarti, A. et al. 2009. Lateral load capacity estimation of large diameter bored piles and its implementation: a study. IABSE reports = Rapports AIPC = IVBH Berichte, Vol.80 (1999).
  22. Civjan, S. & Bonczar, C. et al. 2007. Integral Abutment Bridge Behavior: Pa- rametric Analysis of a Massachusetts Bridge. Journal of Bridge Engineering. Vol. 12, No. 1., pp. 64-71.
  23. Clayton, C. & Bloodworth, A. 2006. A laboratory study of the development of earth pressure behind integral bridge abutments. Géotechnique. Vol. 56, No.
  24. Concrete association of Finland. 1984. Suunnittelun sovellusohjeet, BY 16 (Application note of concrete design). Jyväskylä. 283 p. + 101 app. p. ISBN 951-9365-17-6. (In Finnish)
  25. Connal, J. 2004. Integral Abutment Bridges -Australian and US Practice. Aus- troads 5th Bridge Conference, Hobart, Australia, May 19-21. 19 p.
  26. Dicleli, M. & Abhasai, S. 2003. Maximum length of integral bridges supported on steel H-piles driven in sand. Engineering structures. Vol. 25, No. 12. pp. 1491-1504.
  27. Dicleli, M. & Ehran, S. 2010. Effect of Soil-Bridge Interaction on the Magni- tude of Internal Forces in Integral Abutment Bridge Components due to Live Load Effects. Engineering Structures. Vol. 32, No. 1., pp. 129-145.
  28. Dicleli, M. 2000. Simplified model for computer-aided analysis of integral bridges. Journal of Bridge Engineering. Vol. 5, No. 3., pp. 240-248.
  29. Dicleli, M. 2008. Effect of Soil and Substructure Properties on Live-Load Dis- tribution in Integral Abutment Bridges. Journal of Bridge Engineering. Vol. 13, No. 5., pp. 527-539.
  30. Duncan, J.M. & Chang, C. 1970. Nonlinear Analysis of Stress and Strain in Soils. Journal of the soil mechanics and foundations division, ASCE. Vol. 96, No. 5., pp. 1629-1653.
  31. England, G et al. 2000. Integral Bridges; A fundamental approach to the time- temperature loading problem. 129 p. + 23 app. p. ISBN 0-7277-2845-8.
  32. Federal Highway Administration. 2005. The 2005 -FHWA Conference, Inte- gral Abutment and Jointless Bridges (IAJB 2005), Baltimore, Maryland, United States 16-18 March. 343 p.
  33. Fennema, J. et al. 2005. Predicted and Measured Response of an Integral Abutment Bridge. Journal of Bridge Engineering. Vol. 10, No. 6., pp. 666- 677.
  34. Finnish environmental administration. 1993-2007. Suomen rakentamismääräy- skokoelma, Rakenteiden lujuus, osa B (The National Building Code of Finland, The Strength of Structures. RakMk, part B, in Finnish)
  35. Finnish environmental administration. 2004. Suomen rakentamismääräy- skokoelma, rakenteiden lujuus, osa B4 Betonirakenteet (The National Build- ing Code of Finland, The Strength of Structures, part B4 Concrete Struc- tures). Helsinki.83 p. (In Finnish)
  36. Finnish Association of Civil Engineers. 1989. RIL 179-1989, Sillat (RIL 179- 1989, Bridges). Helsinki. 390 p. ISSN 0356-9403. (In Finnish)
  37. Finnish Meteorological Institute. 2002. Climatological statistics of Finland 1971-2000. Helsinki.99 p. ISSN 1458-4530. (In Finnish)
  38. Finnish Meteorological Institute. 2007. Statistic from Finnish climate, ambient air temperature. Published in the Internet on 5.10.2007 http://www.fmi.fi/saa/tilastot.html
  39. Finnish Railway Administration. 1997. Rautatiesiltojen suunnitteluohjeet, RSO, osa 4. (Railway bridge design introductions, RSO, part 4.) VR 2753.11.0, 17 p. (In Finnish)
  40. Finnish Transport Agency. 2010. Interviews of bridge experts of bridge engi- neering.
  41. Finnra. 1992-2007. Siltojen suunnitelmat (Designs of bridges). Internet 19.2.2008: http://alk.tiehallinto.fi/sillat/suunnit1.htm (In Finnish)
  42. Finnra. 1999. Siltojen kuormat (Loads of bridges). Helsinki. 31 p. ISBN 951- 726-538-2. (In Finnish)
  43. Finnra. 2000. Steel pipe piles. Helsinki. 81 p. + 3 app.p. ISBN 951-726-617-0.
  44. Finnra. 2005. Siltojen ylläpito, Toimintalinjat (Bridge Maintenance, manage- ment policies). Helsinki. 28 p. + 10 app.p. ISBN 951-803-461-3. (In Finnish)
  45. Finnra. 2006. Betonirakenteiden suunnitteluohjeet (Instructions for concrete structures). Helsinki. 33 p.. ISBN 951-803-580-6. (In Finnish)
  46. Finnra. 2007. Sillan geotekniset suunnitteluperusteet (Geotechnical design re- quirements for bridges). Helsinki. 50 p. + 40 app. p. ISBN 978-951-803-896- 5.
  47. Finnra. 2008. Siltarekisteri (Bridge register). Compiled from bridge register on 2.4.2008.
  48. Finnra. 2008. Sillansuunnittelun täydentävät ohjeet (Supplementary bridge de- sign instructions). Helsinki. 28 p. + 84 app. p. ISBN 978-952-221-035-7. (In Finnish)
  49. Finnra. 2010. Sillat 1.1.2010, Liikenneviraston sillaston rakenne, palvelutaso ja kunto (Bridges of Finnish Road Administration on 1.1.2010: structure, ser- vice level and condition of the bridge stock). Helsinki. 77 p. + 2 app. p. ISSN 1459-1561. (In Finnish)
  50. Frank, R. 2008. Design of pile foundations following Eurocode 7-Section 7. Presentation in workshop "Eurocodes: background and applications" Brus- sels, 18-20 February 2008. 8-13. 29 p.
  51. Gabr, M.A. et al. 1997. Buckling of Piles with General Power Distribution of Lateral Subgrade Reaction. Journal of Geotechnical and Geoenvironmental Engineering. Vol. 123, No. 2., pp. 123-130.
  52. Gerolymos, N. et al. 2009. Numerical modeling of centrifuge cyclic lateral pile load experiments. Earthquake Engineering and Engineering Vibration. Vol. 8, No. 1., pp. 61-76.
  53. Girton, D. et al. 1989. Validation of design recommendations for integral- abutment piles. Publication number HR-292, Iowa State University. 82 p. + 15 app. p.
  54. Greimann, L. & Wolde-Tinsae, A. 1988. Design Model for Piles in Jointless Bridges. Journal of Structural Engineering. Vol. 114, No. 6, pp. 1354-1371.
  55. Guo, W. 2009. Nonlinear response of laterally loaded piles and pile groups. In- ternational Journal for Numerical and Analytical Methods in Geomechanics. Vol. 33, No. 5., pp. 879-914.
  56. Hällmark, R. 2006. Low-cycle Fatigue of Steel Piles in Integral Abutment Bridges. Master's thesis. Luleå University of Technology. 132 p. + 39 app. p. ISSN 1402-1617.
  57. Han, J. & Frost, J. 2000. Load defection response of transversely isotropic piles under lateral loads. International Journal for Numerical and Analytical Methods in Geomechanics. Vol. 24, No. 5., pp. 509-529.
  58. Hassiotis, S. & Xiong, K. 2007. Deformation of Cohesionless Fill Due to Cy- clic Loading. Stevens Institute of Technology, New York. 83 p. SPR ID# C- 05-03.
  59. Hassiotis, S. 2007. Data gathering and design details of an integral abutment bridge. Presentation in: 18th Engineering Mechanics Division Conference of ASCE, Blacksburg, Virginia, United States, 3-6 June pp. (EMD2007).
  60. Heinisuo, M. 1989. Paalun analysointi kotimikrolla (Pile analysis using a per- sonal computer). Journal of structural mechanics. Vol. 22, No. 2, pp. 23-41. (In Finnish)
  61. Helsinki University of Technology. Course material 43.3110, Construct of Concrete Structures. 2009.
  62. Hetenyi, M. 1946, renewed 1974. Beams on elastic foundation. Ann Arbor: The University of Michigan Press. 255 p. ISBN 0-472-08445-3
  63. Hettler, A. 1986. Sekantenmoduln bei horizontal belasteten Pfählen in Sand be- rechnet aus nicht-linearer Bettungstheorie. Geotechnik. Vol. 9, No. 1, pp. 20- 29.
  64. Hilmi, M. 2002. Viscoelastic Behaviour of Composite Piles Used in the Con- struction of Quays. Turkish Journal of Engineering & Environmental Sci- ences. Vol. 26, No. 5., pp. 419-427.
  65. Hoppe, E. 2005. Field study of integral backwall with elastic inclusion. Publica- tion number VTRC 05-R28, Virginia Transportation Research Council. 27 p. + 10 app.p.
  66. Huang, J. et al. 2004. Behavior of Concrete Integral Abutment Bridges. Univer- sity of Minnesota. 294 p. + 55 app. p. MN/RC -2004-43.
  67. Hulsey, L. 1992. Bridge lengths: Jointless prestressed girder bridges. University of Alaska Fairbanks. Final report No. INE/TRC/GRP-92.04. 36 p. + 22 app. p.
  68. Hulsey, L. et al. 1990. The no expansion joint bridge for northern regions. Uni- versity of Alaska Fairbanks. Final report No. INE/TRC 90.02. 163 p. + 25 app. p.
  69. Hyrkkönen, A. 1988. Geotechnical bearing capacity of large steel pipe pile. Master's thesis. Tampere University of Technology 187 p. (In Finnish)
  70. Järvinen P. & Järvinen A. 1996. Tutkimustyön metodeista (On Research Met- hods). Tampere University. ISBN 951-97113-1-7. (In Finnish)
  71. Järvinen, V. 2010. Sillansuunnittelun perusteet (Basics of bridge engineering), RTEK-3610. Tampere University of Technology. 89 p. (In Finnish)
  72. Kagawa, T., and Kraft, L. (1980). Seismic P-Y Responses of Flexible Piles. Journal of Geotechnical Engineering. Vol. 106, No. 8, pp. 899-918.
  73. Kerokoski, O. 2005. Soil-structure interaction of jointless bridges. Literature research. Tampere University of Technology. 150 p. ISBN 952-15-1352-7. (In Finnish)
  74. Kerokoski, O. 2005. Soil-structure interaction of jointless bridges with integral abutments. Calculations. Tampere University of Technology. 126 p. Internet 19.2.2008: http://alk.tiehallinto.fi/sillat/julkaisut/silta_ja_maa_lask_06.pdf (In Finnish)
  75. Kerokoski, O. 2006. Soil-Structure Interaction of Long Jointless Bridges with Integral Abutments. Dissertation. Publication number 605, Tampere Univer- sity of Technology 136 p. + 30 app. p. ISBN 952-15-1620-8.F
  76. Khodair, Y. & Hassiotis, S. 2005. Analysis of soil-pile interaction in integral abutment. Computers and Geotechnics. Vol 32, No 3. pp. 201-209.
  77. Klug, P. & Wittmann, F. 1970. The correlation between creep deformation and stress relaxation in concrete. Materials and Structures. Vol. 3, No. 2, pp. 75- 80.
  78. Koskinen, M. 1997. Composite action of steel pipe pile. Publication number 45, Tampere University of Technology. 27 p. ISBN 951-722-989-5.
  79. Koskinen, M. 1997. Horizontal capacity of steel pipe pile. Licentiate thesis. Tampere University of Technology. 204 p. + 27 app. p. (In Finnish)
  80. Koskinen, M. 1997. Soil-Structure Interaction of Jointless Bridges on Piles. Dissertation. Publication number 200, Tampere University of Technology. 184 p. ISBN 951-722-741-8.
  81. Küçükarslan, S. et al. 2003. Inelastic analysis of pile soil structure interaction. Engineering structures. Vol. 25, No. 9. pp. 1231-1239.
  82. Kumar, S. et al. 2006. Nonlinear response of single piles in sand subjected to lateral loads using k hmax approach. Geotechnical and Geological Engineering. Vol. 24, No. 1., pp. 163-181.
  83. Laaksonen, A. & Kerokoski, O. 2007. Long-term Monitoring of Haavistonjoki Bridge. IABSE Symposium, Weimar, Germany. pp. 360-361.
  84. Laaksonen, A. 2004. Soil-structure Interaction of Jointless Bridges. Master's thesis. Tampere University of Technology 160 p. + 76 app. p. ISBN 952-15- 1338-1. (In Finnish)
  85. Laaksonen, A. 2005. Field Test of Tekemäjärvenoja Railway Bridge. Research report. Tampere University of Technology, Earth and Foundation Structures. 25.3.2008, unpublished. Available from Unit of Earth and Foundation Struc- tures TUT. (In Finnish)
  86. Laaksonen, A. 2008. Soil-structure interaction of integral bridge: Test loading with mobile crane. Tampere University of Technology, Earth and Founda- tion Structures. 69 p. + 11 app. p. Published on the Internet, 27.3.2008: http://www.tut.fi/units/rka/mpr/julkaisut/silta_ja_maa_koekuorm.pdf
  87. Lawrer, A. et al. 2000. Field performance of integral abutment bridge. Trans- portation Research Record 1740, paper No. 00-0654. pp. 108-117.
  88. Leppänen, M. 1992. Corrosion of steel pipe piles. Master's thesis. Tampere University of Technology 203 p + 19 app.p. (In Finnish)
  89. Lianyang, Z. et al. 2005. Ultimate Lateral Resistance to Piles in Cohesionless Soils. Journal of Geotechnical and Geoenvironmental Engineering. Vol. 131, No. 1, pp. 78-83.
  90. Lin, T.Y. & Burns, N.H. 1981. Design of prestressed concrete structures. New York. 646 p. ISBN 0-471-01898-8.
  91. Lin, T.Y. 1963. Load-Balancing Method for Design and Analysis of Prestressed Concrete Structures. ACI Journal Proceedings (American Concrete Institute). Vol. 60, No. 6., pp. 719-742.
  92. Ling, L.F. 1988. Back analysis of lateral load test on piles. Report / University of Auckland School of Engineering 460. University of Auckland. 117 p. + 78 app. p. ISSN 0111-0136
  93. LUSAS. 2008. Element reference manual, LUSAS version 14.3: Issue 1. p. 69, 277 and 324.
  94. Maine department of transportation (MDOT). 2003. Bridge design guide: Part 5: Substructures. Updated in 2007.
  95. Matlock, H. & Reese, L. 1960. Generalized solutions for laterally loaded piles. Journal of the soil mechanics and foundations division, ASCE. Vol. 86, No. 5., pp. 63-91.
  96. Matlock, H. & Reese, L. 1961. Foundation analysis of pile supported structures. The Fifth International Conference on Soil Mechanics and Foundation Engi- neering. Paris. 17-22 July. Volume II, pp. 91-97.
  97. Matlock, H. et al. 1979. SPASM 8 -A Dynamic Beam-Column, Program for Seismic Pile Analysis with Support Motion. Fugro, Inc.
  98. Meymand, P. 1998. Shaking Table Scale Model Tests of Nonlinear Soil-Pile- Superstructure Interaction In Soft Clay. University of California, Berkeley. 457 p. + 5 app. p.
  99. Mikkola, M. 1981. Kimmoisella alustalla oleva palkki (Beam on elastic founda- tion). Publication number 36, Helsinki University of Technology. 33 p. (In Finnish)
  100. Mistry, V. 2005. Integral Abutment and Jointless Bridges. The 2005 - FHWA Conference, Integral Abutment and Jointless Bridges (IAJB 2005), Baltimore, Maryland, United States 16-18 March. pp. 3-11.
  101. Mokwa, L. 1999. Investigation of the Resistance of Pile Caps to Lateral Loading. Dissertation. Virginia Polytechnic Institute and State University. 302 p. + 80 app.p.
  102. NA SFS-EN 1991-1-5. 2007. Eurocode 1: Actions on structures -Part 1-5: General actions-Thermal actions. Finnish Standards Association, Helsinki. 5 p.
  103. Oesterle, R & Volz, J. 2005. Effective temperature and longitudinal move- ment in integral abutment bridges. The 2005 -FHWA Conference, Integral Abutment and Jointless Bridges (IAJB 2005), Baltimore, Maryland, United States 16-18 March. pp. 302-311.
  104. Ollila, M. 1973. Theorie der räumlichen Pfahlwerke im elastischen Kon- tinuum. Dissertation. Publication number TKK-DISS-278 TES 661, Helsinki University of Technology 78 p. (In German)
  105. Petursson, H. & Collin, P. 2002. Composite Bridges with Integral Abutments Minimizing Lifetime Cost. IABSE Symposium, Melbourne, Australia. 9 p.
  106. Preston, H. Plastic Design of Steel HP-Piles for Integral Abutment Bridges. The 2005 -FHWA Conference, Integral Abutment and Jointless Bridges (IAJB 2005), Baltimore, Maryland, United States 16-18 March. pp. 270-280.
  107. Pugasap, K. 2006. Hysteresis model based prediction of integral abutment bridge behaviour. Dissertation. The Pennsylvania State University. 259 p. + 126 app. p.
  108. Rautaruukki Oyj. 2010. Brochure: Large diameter steel pipe piles. Hämeenlinna. 19 p. (In Finnish)
  109. Roberts-Wollman, C. & Breen, J. & Cawrse, J. 2002. Measurements of Thermal Gradients and their Effects on Segmental Concrete Bridge. Journal of Bridge Engineering. Vol. 7, No. 3., pp. 166-174.
  110. Rodolfo, M. & Samer, P. 2005. Integral Abutments and Jointless Bridges (IAJB) 2004 Survey Summary. The 2005 -FHWA Conference, Integral Abutment and Jointless Bridges (IAJB 2005), Baltimore, Maryland, United States 16-18 March. pp. 12-29.
  111. Ross, A. D. 1958. Creep of concrete under variable stress. Vol. 29, No. 9, pp. 739-758.
  112. Rovithis, E. et al. 2009. Experimental p-y loops for estimating seismic soil- pile interaction. Bulletin of Earthquake Engineering. Vol. 7, No. 3, pp. 719- 736.
  113. Rowe, P.W. 1956. The Single Pile Subject to Horizontal Force. Geotech- nique. Vol 6, No. 2., pp. 70-85.
  114. Sadrekarimi J. & Akbarzad M. 2009. Comparative Study of Methods of De- termination of Coefficient of Subgrade Reaction. The Electronic Journal of Geotechnical Engineering. Vol. 14, bundle E., pp. 419-427.
  115. SFS-EN 1990. Eurocode 0, Basis of structural design. Finnish Standards As- sociation, Helsinki. 138 p.
  116. SFS-EN 1991-1-5. 2003. Eurocode 1: Actions on structures -Part 1-5: Gen- eral actions -Thermal actions. Finnish Standards Association, Helsinki. 68 p.
  117. SFS-EN 1991-2. Eurocode 1: Actions on structures. Part 2: Traffic loads on bridges. Finnish Standards Association, Helsinki. 164 p.
  118. SFS-EN 1992-1-1. Eurocode 2: Design of concrete structures -Part 1-1: General rules and rules for buildings. Finnish Standards Association, Hel- sinki.
  119. SFS-EN 1992-2. Eurocode 2: Design of concrete structures -Part 2: Con- crete bridges. Design and detailing rules. Finnish Standards Association, Helsinki.
  120. SFS-EN 1994-2. Eurocode 4: Design of composite steel and concrete struc- tures -Part 2: General rules and rules for bridges. Finnish Standards Asso- ciation, Helsinki.
  121. SFS-EN 1997-1. Eurocode 7. Geotechnical design -Part 1: General rules. Finnish Standards Association, Helsinki.
  122. Shamsabadi, A. & Nordal, S. 2006. Modeling passive earth pressures on bridge abutments for nonlinear Seismic Soil-Structure interaction using Plaxis. Plaxis Bulletin. No. 6., pp. 8-15.
  123. Shamsabadi, A. et al. 2007. Nonlinear Soil-Abutment-Bridge Structure In- teraction for Seismic Performance-Based Design. Journal of Geotechnical and Geoenvironmental Engineering. Vol. 133, No. 6., pp. 707-720.
  124. Shirato, M. et al. 2006. A New Nonlinear Hysteretic Rule for Winkler Type Soil-Pile Interaction Springs that Considers Loading Pattern Dependency. Soils and Foundations, Japanese Society of Soil Mechanics and Foundation Engineering. Vol. 46, No. 2., pp. 173-188.
  125. Smith, T. 1987. Pile horizontal modulus values. Journal of Geotechnical En- gineering. Vol. 113, No. 9., pp. 1040-1044.
  126. Smoltczyk, U. 1992. Grundbau-Taschenbuch, Teil 3. 846 p. Berlin. ISBN 3- 433-01412-4 (In German)
  127. Stark, R.F. & Booker, J.R. 1997. Surface Displacements of a Non- homogeneous Elastic Half-space Subjected to Uniform Surface Tractions. Part II: Loading on Rectangular Shaped Areas. International Journal for Nu- merical and Analytical Methods in Geomechanics. Vol. 21, No. 6., pp. 379- 395.
  128. Taciroglu, E. et al. 2006. A Robust Macroelement Model for Soil-Pile Inter- action under Cyclic Loads. Journal of Geotechnical and Geoenvironmental Engineering. Vol. 132, No. 10, pp. 1304-1314.
  129. Terzaghi, K. 1955. Evaluation of coefficients of subgrade reaction. Geotech- nique. Vol 5, No. 4., pp. 297-326.
  130. Terzaghi, K. et al. Soil mechanics in engineering practice. pp.133-134. ISBN 0-471-08658-4
  131. The International Federation for Structural Concrete (fib). 1999. Structural Concrete. Textbook on Behaviour, Design and Performance Vol. 1: Introduction -Design Process -Materials. Stuttgart. ISBN 978-2- 88394-041-3.
  132. Timoshenko, S. & Goodier, J.N. 1951. Theory of Elasticity. pp. 366-372
  133. Titze, E. 1970. Über den seitlichen Bodenwiderstand bei Pfahlgründungen. Bauingenieur-Praxis, 77. Berlin. 118 p. + 18 app. p. ISBN 3-433-00040-9 (In German)
  134. Törnqvist, J. 2004. Teräsputkipaalujen korroosio, Mitoitus empiiriseen aineistoon pohjautuen (Corrosion of steel piles, dimensioning on the basis of empirical material). Espoo. 42 p. ISBN 952-5004-53-8. (In Finnish)
  135. Tschumi, M. 2008. Railway actions, selected chapters from EN 1991-2 and Annex A2 of EN 1990. Presentation in workshop "Eurocodes: background and applications" Brussels, 18-20 February 2008. 8-13. 37 p.
  136. Tuominen, M. 2008. The Utilization of Elastic Material in Integral Abutment Bridges. Master's thesis. Tampere University of Technology 67 p. + 14 app.p. (In Finnish)
  137. UK Highways Agency 2003. Design manual for roads and bridges, Volume 1 Section 3 Part 12 BA42/96, The Design of Integral Bridges. The Stationary Office UK. 16 p.
  138. Vesic, A.S. 1961. Beams on Elastic Subgrade and Winkler Hypothesis. Pro- ceedings of the Fifth International Conference on Soil Mechanics and Foun- dation Engineering. Paris. Vol 1, pp. 545-550.
  139. Vilonen, H. 2007. Soil-structure interaction of skewed jointless bridges. Mas- ter's thesis. Tampere University of Technology. 83 p. + 38 app. p. Internet 19.2.2008: http://alk.tiehallinto.fi/sillat/julkaisut/silta_ja_maa_vino.pdf (In Finnish)
  140. Wasserman, E. 2007. Integral abutment design (Practices in the United States). 1st U.S.-Italy Seismic Bridge Workshop, Pavia, Italy, 19-20 April. 12 p.
  141. Wiemann, J. et al. 2004. Evaluation of Pile Diameter Effects on Soil-Pile Stiffness. 7th German Wind Energy Conference DEWEK. Wilhelmshaven. 20-21 October. 4 p.
  142. Woodward, R. et al. 1972. Drilled Pier Foundations. McGraw-Hill Company. pp. 61-104. ISBN 0-07-071783-4.
  143. Yoshida, I. & Yoshinaka, R. 1972. A Method to Estimate Modulus of Hori- zontal Subgrade Reaction for a Pile. Soils and Foundations, Japanese Society of Soil Mechanics and Foundation Engineering. Vol. 12, No. 3. pp. 1-17.
  144. Zhang, L. et al. 2005. Ultimate Lateral Resistance of Piles in Cohesionless Soils. Journal of Geotechnical and Geoenvironmental Engineering. Vol. 131, No. 1., pp. 78-83.
  145. i. Pile bending moments M R at top of pile from bridge mod- els B2_L1_S1_d914 and B3_L1_S1_d914, pp. 244-245 ii. Moment M y,end,tot from bridge models B2_ L1_S1_d914 and B3_ L1_S1_d914, pp. 245-247
  146. M R -Z, M R -F X and D X,end1 -D X,end2 diagrams from bridge models B1, pp. 248-252
  147. M R -Z, M R -F X and D X,end1 -D X,end2 diagrams from bridge models B2, pp. 253-257
  148. M R -Z, M R -F X and D X,end1 -D X,end2 diagrams from bridge models B3, pp. 258-262
  149. Analyses of preliminary reinforcement and bending stiffnesses of reinforced bridge superstructure, pp. 263-265