Academia.eduAcademia.edu

Testing for Threshold Effect in ARFIMA Models: Application to US Unemployment Rate Data

2008, Social Science Research Network

https://doi.org/10.2139/SSRN.1311866

Abstract

Macroeconomic time series often involve a threshold effect in their ARMA representation, and exhibit long memory features. In this paper we introduce a new class of threshold ARFIMA models to account for this. The threshold effect is introduced in the autoregressive and/or the fractional integration parameters, and can be tested for using LM tests. Monte Carlo experiments show the desirable finite sample size and power of the test with an exact maximum likelihood estimator of the long memory parameter. Simulations also show that a model selection strategy is available to discriminate between the competing threshold ARFIMA models. The methodology is applied to US unemployment rate data where we find a significant threshold effect in the ARFIMA representation and a better forecasting performance relative to TAR and symmetric ARFIMA models.

References (38)

  1. Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In 2nd International Symposium on Information Theory, 267-281.
  2. Akaike, H. (1974). A new look at the statistical model identification. IEEE Trans. Auto. Control, AC-19, 716-723.
  3. An, S., & Bloomfield, P. (1993). Cox and Reid's modification in regression models with correlated errors. Discussion paper, Department of Statis- tics, North Carolina State University, Raleigh, NC 27695-8203, U.S.A.
  4. Anas, J., & Ferrara, F. (2002). Un indicateur d'entrée et de sortie de réces- sion : application aux Etats-Unis. Working paper. Centre d'Observation Economique, Paris.
  5. Andersson, M., Eklund, B., & Lyhangen, J. (1999). A simple linear time series model with misleading nonlinear properties. Economics Letters, 65, 281-284.
  6. Andrews, D., & Ploberger, W. (1994). Optimal tests when a nuisance pa- rameter is only present under the alternative. Econometrica, 62, 1383- 1414.
  7. Baillie, R. T., & Kapetanios, G. (2008). Semi parametric estimation of long memory : the holy grail or a poisoned chalice?. Forthcoming, Journal of Econometrics.
  8. Bellone, B., & Saint-Martin, D. (2003). Detecting turning points with many predictors through hidden markov models. Working Paper. Seminaire Faugeaud.
  9. Bhardwaj, G., & Swanson, N. R. (2006). An empirical investigation of the usefulness of ARFIMA models for predicting macroeconomic and financial time series. Journal of Econometrics, 131, 539-578.
  10. Bruneau, C., & Lahiani, A. (2006). Estimation of TIMA model with con- temporaneous asymmetry by indirect inference. Swiss Journal of Eco- nomics and Statistics, 4, 479-500.
  11. Cox, D.R., & Reid, N. (1987). Parameter orthogonality and approximate conditional inference. Journal of the Royal Statistical Society Series B, 49, 1-39.
  12. Davies, R. (1977). Hypothesis testing when a nuisance parameter is present only under the alternative. Biometrika, 64, 247-254.
  13. Davies, R. (1987). Hypothesis testing when a nuisance parameter is present only under the alternative. Biometrika, 74, 33-43.
  14. Diebold, F. X., & Inoue, A. (2001). Long memory and megime switching. Journal of Econometrics, 105, 131-159.
  15. Diebold, F. X., & Mariano, R. S. (1995). Comparing predictive accuracy. Journal of Business and Economic Statistics, 13, 253-263.
  16. Diebold, F. X., & Rudebusch, G. D. (1991). Is consumption too smooth? long memory and the Deaton Pardox. The Review of Economics and Statistics, 73, 1-9.
  17. Franses, P. H., & van Dijk, D. (2000). Non-linear time series models in empirical finance. Cambridge University Press.
  18. Geweke, J., & Porter-Hudak, S. (1983). The estimation and application of long memory time series models. Journal of time Series Analysis, 4, 221-238.
  19. Guay, A., & Scaillet, O. (2003). Indirect inference, nuisance parameter and threshold moving average models. Journal of Business and Economic Statistics, 21, 122-132.
  20. Hamilton, J. D. (1989). A new approach to the economic analysis of nonsta- tionary time series and the business cycle. Econometrica, 57, 357-384.
  21. Hannan, E. J., & Quinn, G. (1979). The determination of the order of an autoregression. Journal of the Royal Statistical Society Series B, 41, 190-195.
  22. Hansen, E.B. (1996a). Inference when a nuisance parameter is not identified under the null. Econometrica, 64, 413-430.
  23. Hidalgo, J., & Robinson, P. M. (1996). Testing for structural change in a long memory environment. Journal of Econometrics, 70, 159-174.
  24. Hurst, H.E. (1951). Long-term storage capacity of reservoirs. Transactions of the American Society of Civil Engineers, 116, 770-799.
  25. Kapetanios, G. (2001). Model selection in threshold models. Journal of Time Series Analysis, 22, 733-754.
  26. Krünsch, H.R. (1987). Statistical aspects of self-similar processes. in: Y. Prohorov and V.V. Sasanov, eds., Proceedings of the firstWorld Congress of the Bernoulli Society (VNU Science Press, Utrecht).
  27. Liberman, O., Rousseau, J., & Zucker, D. M. (2002). Valid asymptotic expansions for the maximum likelihood estimator of the parameter of a stationary, gaussian, strongly dependent process. Cowles Foundation Discussion Paper No. 1351.
  28. Lo, A. (1991). Long-term memory in stock market prices. Econometrica, 59, 1279-1313.
  29. Lobato, I. N., & Savin, N. E. (1997). Real and spurious long memory prop- erties of stock-market data. Journal of Business and Economic Statis- tics, 16, 261-283.
  30. McCracken, M. W. (2007). The asymptotics of out of sample tests of Granger causality. Journal of Econometrics, 140, 719-752.
  31. McLeod, A. I. (1999). Necessary and sufficient condition for nonsingular Fisher information matrix in ARMA and fractional ARIMA models. The American Statistician, 53, 71-72.
  32. Robinson, P.M. (1995). Gaussian semiparametric estimation of long range dependence. The Annals of Statistics, 23, 1630-1661.
  33. Rothman, P. (1998). Forecasting asymmetric unemployment rates. The Re- view of Economics and Statistics, 80, 164-168.
  34. Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461-464.
  35. Sowell, F.B. (1992). Maximum likelihood estimation of stationary univari- ate fractionally integrated time series models. Journal of Econometrics, 53, 165-188.
  36. Tong, H. (1983). Threshold models in non-linear time series analysis. New York: Springer-Verlag.
  37. Tong, H., & Lim, K. S. (1980). Threshold autoregression, limit cycles and cyclical data. Journal of the Royal Statistical Society Series B, 42, 245- 292.
  38. van Dijk, D., Franses, P. H., & Paap, R. (2002). A nonlinear long memory model, with an application to US unemployment. Journal of Economet- rics, 110, 135-165.