Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2003, Memorie della …
This paper aims to give a brief description of the Wide Angle Camera (WAC), built by the Centro Servizi e Attività Spaziali (CISAS) of the University of Padova for the ESA ROSETTA Mission to comet 46P/Wirtanen and asteroids 4979 Otawara and 140 Siwa. The WAC is part of the OSIRIS imaging system, which comprises also a Narrow Angle Camera (NAC) built by the Laboratoire d'Astrophysique Spatiale (LAS) of Marseille. CISAS had also the responsibility to build the shutter and the front cover mechanism for the NAC. The flight model of the WAC was delivered in December 2001, and has been already integrated on ROSETTA.
2005
This paper gives a brief description of the Wide Angle Camera (WAC), built by the Center of Studies and Activities for Space (CISAS) of the University of Padova for the ESA ROSETTA Mission, of data we have obtained about the new mission targets, and of the first results achieved after the launch in March 2004. The WAC is part of
Advances in Space Research, 1998
The scientific objectives, design, and implementation of the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) for the International Rosetta Mission are described. The instrument comprises two camera systems with a common electronics box. A narrow angle camera will provide high resolution images of the structure and morphology of the nucleus of a comet. A wide angle camera with high straylight rejection and dynamic range will be used to investigate the innermost coma and the emission process at the surface of the comet. An infrared imaging system, which dramatically enhances the scientific return has been included in the narrow angle camera at little extra cost. 01998 COSPAR. Published by Elsevier Science Ltd.
ROSETTA ESA’s Mission to the Origin of the Solar System, Springer, 2009
The Optical, Spectroscopic, and Infrared Remote Imaging System OSIRIS is the scientific camera system onboard the Rosetta spacecraft ( ). The advanced high performance imaging system will be pivotal for the success of the Rosetta mission. OSIRIS will detect Space Science Reviews (2007) 128: 433-506 C Springer 2007 101 μrad px −1 . The two units use identical shutter, filter wheel, front door, and detector systems. They are operated by a common Data Processing Unit. The OSIRIS instrument has a total mass of 35 kg and is provided by institutes from six European countries.
Proceedings of the International Astronomical Union, 2009
In March 2004 the European Space Agency launched its Planetary Cornerstone Mission Rosetta to rendezvous with Jupiter-family comet 67P/Churyumov-Gerasimenko. The Rosetta mission represents the next step into the improvement of our understanding of comet nuclei naturally following the four successful comet nucleus fly-by missions carried out in the past. It will however not perform a simple fly-by at its target comet, but combines an Orbiter and a Lander Mission. The Rosetta spacecraft will go in orbit around the comet nucleus when it is still far away from the Sun, and escort the comet for more than a year along its pre- and post-perihelion orbit while monitoring the evolution of the nucleus and the coma as a function of increasing and decreasing solar flux input. Different instrumentations will be used in parallel, from multi-wavelength spectrometry to in-situ measurements of coma and nucleus composition and physical properties. In addition the Rosetta Lander Philae will land on th...
Astronomy and Astrophysics, 2007
Context. In 2004 asteroid (2867) Steins has been selected as a flyby target for the Rosetta mission. Determination of its spin period and the orientation of its rotation axis are essential for optimization of the flyby planning. Aims. Measurement of the rotation period and light curve of asteroid (2867) Steins at a phase angle larger than achievable from ground based observations, providing a high quality data set to contribute to the determination of the orientation of the spin axis and of the pole direction. Methods. On March 11, 2006, asteroid (2867) Steins was observed continuously for 24 hours with the scientific camera system OSIRIS onboard Rosetta. The phase angle was 41.7 degrees, larger than the maximum phase angle of 30 degrees when Steins is observed from Earth. A total of 238 images, covering four rotation periods without interruption, were acquired. Results. The light curve of (2867) Steins is double peaked with an amplitude of ≈ 0.23 mag. The rotation period is 6.052 ± 0.007 hours. The continuous observations over four rotation periods exclude the possibility of period ambiguities. There is no indication of deviation from a principal axis rotation state. Assuming a slope parameter of G = 0.15, the absolute visual magnitude of Steins is 13.05 ± 0.03.
Icarus, 2007
The OSIRIS cameras on the Rosetta spacecraft observed Comet 9P/Tempel 1 from 5 days before to 10 days after it was hit by the Deep Impact projectile. The Narrow Angle Camera (NAC) monitored the cometary dust in 5 different filters. The Wide Angle Camera (WAC) observed through * Corresponding author.
Journal of Astronomical Instrumentation
The Navigation Camera (NavCam) on board the Rosetta spacecraft was essential for optical navigation in the vicinity of the comet 67P/Churyumov–Gerasimenko. Images acquired throughout the mission are also of high scientific interest. In order to extend the range of potential applications, we generated datasets of radiometrically calibrated images. For this purpose, methods based on stellar observations as well as cross-calibration with images of the extended comet nucleus were investigated. In this paper, we document technical characteristics of the camera, discuss the techniques applied for determining appropriate calibration factors, and describe the algorithms used for correcting detector effects and artifacts. The calibrated images were archived in the Planetary Science Archive of the European Space Agency.
Astronomy & Astrophysics, 2015
Context. The ESA cometary mission Rosetta was launched in 2004. In the past years and until the spacecraft hibernation in June 2011, the two cameras of the OSIRIS imaging system (Narrow Angle and Wide Angle Camera, NAC and WAC) observed many different sources. On 20 January 2014 the spacecraft successfully exited hibernation to start observing the primary scientific target of the mission, comet 67P/Churyumov-Gerasimenko. Aims. A study of the past performances of the cameras is now mandatory to be able to determine whether the system has been stable through the time and to derive, if necessary, additional analysis methods for the future precise calibration of the cometary data. Methods. The instrumental responses and filter passbands were used to estimate the efficiency of the system. A comparison with acquired images of specific calibration stars was made, and a refined photometric calibration was computed, both for the absolute flux and for the reflectivity of small bodies of the solar system. Results. We found a stability of the instrumental performances within ±1.5% from 2007 to 2010, with no evidence of an aging effect on the optics or detectors. The efficiency of the instrumentation is found to be as expected in the visible range, but lower than expected in the UV and IR range. A photometric calibration implementation was discussed for the two cameras. Conclusions. The calibration derived from pre-hibernation phases of the mission will be checked as soon as possible after the awakening of OSIRIS and will be continuously monitored until the end of the mission in December 2015. A list of additional calibration sources has been determined that are to be observed during the forthcoming phases of the mission to ensure a better coverage across the wavelength range of the cameras and to study the possible dust contamination of the optics.
2020
EnVisS (Entire Visible Sky) is an all-sky camera specifically designed to fly on the space mission Comet Interceptor. This mission has been selected in June 2019 as the first European Space Agency (ESA) Fast mission, a modest size mission with fast implementation. Comet Interceptor aims to study a dynamically new comet, or interstellar object, and its launch is scheduled in 2029 as a companion to the ARIEL mission. The mission study phase, called Phase 0, has been completed in December 2019, and then the Phase A study had started. Phase A will last for about two years until mission adoption expected in June 2022. The Comet Interceptor mission is conceived to be composed of three spacecraft: spacecraft A devoted to remote sensing science, and the other two, spacecraft B1 and B2, dedicated to a fly-by with the comet. EnVisS will be mounted on spacecraft B2, which is foreseen to be spin-stabilized. The camera is developed with the scientific task to image, in push-frame mode, the full ...
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.